# El supremo, el ínfimo y las operaciones aritméticas (un tema de "Análisis Real")

Egor Maximenko

http://www.egormaximenko.com

Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas México

11 de marzo de 2021

Objetivo: demostrar fórmulas para

$$\sup(A+b), \qquad \sup(bA), \qquad \sup(A+B),$$

donde  $A, B \subseteq \mathbb{R}$ ,  $b \in \mathbb{R}$ .

#### **Prerrequisitos:**

- las definiciones de sup e inf,
- las definiciones de  $A + \lambda$ ,  $\lambda A$ , A + B.

# Operaciones aritméticas con conjuntos

Sean  $A, B \subseteq \mathbb{R}$ .

$$A + B := \{c \in \mathbb{R}: \quad \exists a \in A \quad \exists b \in B \quad c = a + b\},$$
  
 $AB := \{c \in \mathbb{R}: \quad \exists a \in A \quad \exists b \in B \quad c = ab\}.$ 

# Operaciones aritméticas con conjuntos

Sean  $A, B \subseteq \mathbb{R}$ .

$$A + B := \{c \in \mathbb{R}: \quad \exists a \in A \quad \exists b \in B \quad c = a + b\},$$
  
 $AB := \{c \in \mathbb{R}: \quad \exists a \in A \quad \exists b \in B \quad c = ab\}.$ 

También se puede usar la notación breve:

$$A + B = \{a + b \in \mathbb{R}: a \in A, b \in A\}.$$

# Operaciones aritméticas con conjuntos

Sean  $A, B \subseteq \mathbb{R}$ .

$$A + B := \{c \in \mathbb{R}: \quad \exists a \in A \quad \exists b \in B \quad c = a + b\},$$
  
 $AB := \{c \in \mathbb{R}: \quad \exists a \in A \quad \exists b \in B \quad c = ab\}.$ 

También se puede usar la notación breve:

$$A + B = \{a + b \in \mathbb{R}: a \in A, b \in A\}.$$

Es una abreviación de la definición verdadera escrita arriba.

# La suma de dos segmentos del eje real

#### Ejercicio.

Sean  $p, q, r, s \in \mathbb{R}$ ,  $p \le q$ ,  $r \le s$ . Demostrar que

$$[p,q] + [r,s] = [p+r,q+s].$$

# La suma de dos segmentos del eje real

#### Ejercicio.

Sean  $p, q, r, s \in \mathbb{R}$ ,  $p \le q$ ,  $r \le s$ . Demostrar que

$$[p,q] + [r,s] = [p+r,q+s].$$

La demostración de la contención  $\subseteq$  es simple.

# La suma de dos segmentos del eje real

#### Ejercicio.

Sean  $p, q, r, s \in \mathbb{R}$ ,  $p \leq q$ ,  $r \leq s$ . Demostrar que

$$[p,q] + [r,s] = [p+r,q+s].$$

La demostración de la contención  $\subseteq$  es simple.

Se recomienda demostrar la contención  $\supseteq$  de manera constructiva: dado z en [p+r,q+s], construir  $x \in [p,q]$ ,  $y \in [r,s]$  tales que z=x+y.

Sean  $A \subseteq \mathbb{R}$ ,  $b \in \mathbb{R}$ . Entonces:

$$A+b := A+\{b\} = \{c \in \mathbb{R}: \exists a \in A \quad c=a+b\},$$

$$Ab := A\{b\} = \{c \in \mathbb{R}: \quad \exists a \in A \quad c = ab\},$$

 $-A := (-1) \cdot A = \{c \in \mathbb{R}: \exists a \in A \ c = -a\}.$ 

Sean  $A \subseteq \mathbb{R}$ ,  $b \in \mathbb{R}$ . Entonces:

$$A + b := A + \{b\} = \{c \in \mathbb{R}: \exists a \in A \ c = a + b\},$$
  
 $Ab := A\{b\} = \{c \in \mathbb{R}: \exists a \in A \ c = ab\},$ 

$$-A \coloneqq (-1) \cdot A = \{c \in \mathbb{R}: \quad \exists a \in A \quad c = -a\}.$$

Estas definiciones se extienden al caso  $A\subseteq \overline{\mathbb{R}},\ b\in\mathbb{R}.$ 

#### La suma de un conjunto y un número

$$A + b := \{c \in \overline{\mathbb{R}}: \exists a \in A \ c = a + b\}.$$

 $A + b = \{c \in \overline{\mathbb{R}}: c - b \in A\}.$ 

#### Proposición

Sean  $A \subseteq \mathbb{R}$ ,  $b \in \mathbb{R}$ . Entonces

Sean 
$$A \subseteq \mathbb{R}$$
,  $b \in \mathbb{R}$ . Entonces

## La suma de un conjunto y un número

$$A + b := \{c \in \overline{\mathbb{R}}: \exists a \in A \ c = a + b\}.$$

#### Proposición

Sean  $A \subseteq \mathbb{R}$ ,  $b \in \mathbb{R}$ . Entonces

$$A+b=\{c\in\overline{\mathbb{R}}: c-b\in A\}.$$

 $\subseteq$ . Sea  $c \in A + b$ . Entonces existe a en A tal que c = a + b.

La última igualdad implica que a=c-b. Entonces  $c-b\in A$ .

## La suma de un conjunto y un número

$$A + b := \{c \in \overline{\mathbb{R}}: \exists a \in A \ c = a + b\}.$$

#### Proposición

Sean  $A \subseteq \mathbb{R}$ ,  $b \in \mathbb{R}$ . Entonces

$$A+b=\{c\in\overline{\mathbb{R}}: c-b\in A\}.$$

 $\subseteq$ . Sea  $c \in A + b$ . Entonces existe a en A tal que c = a + b.

La última igualdad implica que a = c - b. Entonces  $c - b \in A$ .

- $\supseteq$ . Sea  $c \in \mathbb{R}$  tal que  $c b \in A$ .
- Pongamos a = c b. Entonces  $a \in A$  y c = a + b.

## Ejercicio.

Sean  $A\subseteq\mathbb{R},\ b\in\mathbb{R}.$  Demostrar que

$$A = (A+b) + (-b).$$

## El producto de un conjunto por un número

#### Ejercicio.

Sea  $A \subseteq \mathbb{R}$  tal que  $A \neq \emptyset$ . Demostrar que

$$A0 = \{0\}.$$

# El producto de un conjunto por un número

## Ejercicio.

Sea  $A\subseteq\mathbb{R}$  tal que  $A\neq\emptyset$ . Demostrar que

$$A0 = \{0\}.$$

#### Ejercicio.

Sean  $A \subseteq \mathbb{R}$ ,  $b \in \mathbb{R} \setminus \{0\}$ . Demostrar que

$$Ab = \left\{ c \in \mathbb{R} : \quad \frac{c}{b} \in A \right\}.$$

Sean  $A \subseteq \overline{\mathbb{R}}$ ,  $b \in \mathbb{R}$ . Entonces  $\sup(b+A) = b + \sup(A)$ .

Sean  $A \subseteq \overline{\mathbb{R}}$ ,  $b \in \mathbb{R}$ . Entonces  $\sup(b+A) = b + \sup(A)$ .

$$\leq$$
. Sea  $x \in b + A$ .

Sean  $A \subseteq \overline{\mathbb{R}}$ ,  $b \in \mathbb{R}$ . Entonces  $\sup(b+A) = b + \sup(A)$ .

$$\leq$$
. Sea  $x \in b + A$ . Entonces  $x - b \in A$ .

Sean  $A \subseteq \overline{\mathbb{R}}$ ,  $b \in \mathbb{R}$ . Entonces  $\sup(b+A) = b + \sup(A)$ .

$$\leq$$
. Sea  $x \in b + A$ . Entonces  $x - b \in A$ .

Luego  $x - b \leq \sup(A)$ .

Sean  $A \subseteq \overline{\mathbb{R}}$ ,  $b \in \mathbb{R}$ . Entonces  $\sup(b+A) = b + \sup(A)$ .

$$\leq$$
. Sea  $x \in b + A$ . Entonces  $x - b \in A$ .

Luego  $x - b \le \sup(A)$ . Por eso  $x \le b + \sup(A)$ .

Sean  $A \subseteq \overline{\mathbb{R}}$ ,  $b \in \mathbb{R}$ . Entonces  $\sup(b+A) = b + \sup(A)$ .

$$\leq$$
. Sea  $x \in b + A$ . Entonces  $x - b \in A$ .

Luego  $x - b \le \sup(A)$ . Por eso  $x \le b + \sup(A)$ .

Hemos mostrado que  $b + \sup(A)$  es una cota superior de b + A.

Sean  $A \subseteq \overline{\mathbb{R}}$ ,  $b \in \mathbb{R}$ . Entonces  $\sup(b+A) = b + \sup(A)$ .

$$\leq$$
. Sea  $x \in b + A$ . Entonces  $x - b \in A$ .

Luego  $x - b \le \sup(A)$ . Por eso  $x \le b + \sup(A)$ .

Hemos mostrado que  $b + \sup(A)$  es una cota superior de b + A.

$$>$$
. Sea  $x \in A$ . Entonces  $x + b \in b + A$ .

Luego  $x + b \le \sup(b + A)$ . Luego  $x \le \sup(b + A) - b$ .

Hemos mostrado que  $\sup(b+A)-b$  es una cota superior de A.  $\sup(A) \le \sup(b+A)-b$ .

Sean  $A \subseteq \overline{\mathbb{R}}$ ,  $b \in \mathbb{R}$ . Entonces  $\sup(b+A) = b + \sup(A)$ .

Después de demostrar la desigualdad  $\leq$ , hay otra manera de demostrar la desigualdad  $\geq$ .

Sean  $A \subseteq \overline{\mathbb{R}}$ ,  $b \in \mathbb{R}$ . Entonces  $\sup(b+A) = b + \sup(A)$ .

Después de demostrar la desigualdad  $\leq$ , hay otra manera de demostrar la desigualdad  $\geq$ .

Pongamos C := b + A. Entonces A = C + (-b).

Sean  $A \subseteq \overline{\mathbb{R}}$ ,  $b \in \mathbb{R}$ . Entonces  $\sup(b+A) = b + \sup(A)$ .

Después de demostrar la desigualdad  $\leq$ , hay otra manera de demostrar la desigualdad  $\geq$ .

Pongamos C := b + A. Entonces A = C + (-b).

Aplicamos la primera parte de la demostración al conjunto C y al número -b:

$$\sup(C+(-b))\leq \sup(C)-b.$$

Sean  $A \subseteq \overline{\mathbb{R}}$ ,  $b \in \mathbb{R}$ . Entonces  $\sup(b+A) = b + \sup(A)$ .

Después de demostrar la desigualdad <, hay otra manera de demostrar la desigualdad >.

Pongamos C := b + A. Entonces A = C + (-b).

Aplicamos la primera parte de la demostración al conjunto C y al número -b:

$$\sup(C+(-b))\leq \sup(C)-b.$$

Obtenemos  $\sup(A) \leq \sup(b+A) - b$ .

# El supremo del producto de un conjunto por un número

**Ejercicio.** Sean  $A \subseteq \overline{\mathbb{R}}$  y b > 0. Demostrar que

$$\sup(bA) = b\sup(A).$$

# El supremo del producto de un conjunto por un número

**Ejercicio.** Sean  $A \subseteq \overline{\mathbb{R}}$  y b > 0. Demostrar que

$$\sup(bA) = b\sup(A).$$

**Ejercicio.** Sea  $A \subseteq \overline{\mathbb{R}}$ . Demostrar que

$$\sup(-A) = -\inf(A).$$

# El supremo del producto de un conjunto por un número

**Ejercicio.** Sean  $A\subseteq \overline{\mathbb{R}}$  y b>0. Demostrar que

$$\sup(bA) = b\sup(A).$$

**Ejercicio.** Sea  $A \subseteq \overline{\mathbb{R}}$ . Demostrar que

$$\sup(-A) = -\inf(A).$$

**Ejercicio.** Sean  $A\subseteq\overline{\mathbb{R}}$  y b<0. Demostrar que

$$\sup(bA) = b\inf(A).$$

## Teorema (sobre el supremo de la suma de dos conjuntos)

Sean  $A, B \subseteq \mathbb{R}$ ,  $A \neq \emptyset$ ,  $B \neq \emptyset$ . Entonces

$$5 \neq \emptyset$$
. Entonces

 $\sup(A+B)=\sup(A)+\sup(B).$ 

Sea 
$$c \in A + B$$
.

Sea  $c \in A + B$ .

Encontramos  $a \in A$ ,  $b \in B$  tales que c = a + b.

Sea  $c \in A + B$ .

Encontramos  $a \in A$ ,  $b \in B$  tales que c = a + b.

Como  $a \le \sup(A)$ ,  $b \le \sup(B)$ , obtenemos  $c \le \sup(A) + \sup(B)$ .

Sea  $c \in A + B$ .

Encontramos  $a \in A$ ,  $b \in B$  tales que c = a + b.

(4)

Como  $a \le \sup(A)$ ,  $b \le \sup(B)$ , obtenemos  $c \le \sup(A) + \sup(B)$ .

Hemos motrado que  $\sup(A) + \sup(B) \in CS(A + B)$ .

Sea  $c \in A + B$ .

Encontramos  $a \in A$ ,  $b \in B$  tales que c = a + b.

Como  $a \le \sup(A)$ ,  $b \le \sup(B)$ , obtenemos  $c \le \sup(A) + \sup(B)$ .

Hemos motrado que  $sup(A) + sup(B) \in CS(A + B)$ .

Por lo tanto,  $\sup(A+B) \leq \sup(A) + \sup(B)$ .

Demostración de  $\sup(A+B) \ge \sup(A) + \sup(B)$ , caso  $\sup(A) = +\infty$ 

Usando la hipótesis  $B \neq \emptyset$  elegimos  $b_0 \in B$ .

Demostración de  $\sup(A+B) \ge \sup(A) + \sup(B)$ , caso  $\sup(A) = +\infty$ 

Usando la hipótesis  $B \neq \emptyset$  elegimos  $b_0 \in B$ .

$$\sup(A+B) \ge \sup(A + \{b_0\}) = \sup(A + b_0) = b_0 + \sup(A) = +\infty.$$

$$oxed{\mathsf{Sea}\ arepsilon>0}$$

$$\boxed{p - \frac{\varepsilon}{2} \notin \mathsf{CS}(A)} \longrightarrow \boxed{\exists a \in A \quad a > p - \frac{\varepsilon}{2}}$$

$$\boxed{\mathsf{Sea} \ \varepsilon > 0}$$

$$\begin{array}{c}
p - \frac{\varepsilon}{2} \notin \mathsf{CS}(A) \\
\hline
Sea \ \varepsilon > 0
\end{array}$$

$$q - \frac{\varepsilon}{2} \notin \mathsf{CS}(B)$$

$$\begin{array}{c}
 \left[ p - \frac{\varepsilon}{2} \notin \mathsf{CS}(A) \right] & \exists a \in A \quad a > p - \frac{\varepsilon}{2} \\
 \left[ \mathsf{Sea} \ \varepsilon > 0 \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b > q - \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right] & \exists b \in B \quad b = \frac{\varepsilon}{2} \\
 \left[ \mathsf{A} \right]$$

 $p \coloneqq \sup(A)$ ,  $q \coloneqq \sup(B)$ . Consideremos el caso, cuando  $p, q \in \mathbb{R}$ .

 $p \coloneqq \sup(A), \ q \coloneqq \sup(B)$ . Consideremos el caso, cuando  $p, q \in \mathbb{R}$ .

$$\exists a \in A \quad a > p - \frac{\varepsilon}{2}$$

$$\Rightarrow a \in A \quad a > p - \frac{\varepsilon}{2}$$

$$\Rightarrow a + b \in A + B,$$

$$\Rightarrow a + b > p + q - \varepsilon$$

$$\Rightarrow a + b > p + q - \varepsilon$$

$$\Rightarrow a + b > p + q - \varepsilon$$

Como  $\varepsilon > 0$  es arbitrario, concluimos que  $\sup(A + B) \ge \sup(A) + \sup(B)$ .

$$\forall a \in A \quad \forall b \in B \quad a = (a+b) - b \le \sup(A+B) - b.$$

$$\forall a \in A$$
  $\forall b \in B$   $a = (a+b) - b \le \sup(A+B) - b.$   $\forall b \in B$   $(\forall a \in A \quad a \le \sup(A+B) - b).$ 

$$\forall a \in A \qquad \forall b \in B \qquad a = (a+b) - b \le \sup(A+B) - b.$$
   
  $\forall b \in B \qquad \Big( \forall a \in A \qquad a \le \sup(A+B) - b \Big).$    
  $\forall b \in B \qquad \sup(A) \le \sup(A+B) - b.$ 

$$\forall a \in A \qquad \forall b \in B \qquad a = (a+b) - b \le \sup(A+B) - b.$$
  $\forall b \in B \qquad \Big( \forall a \in A \qquad a \le \sup(A+B) - b \Big).$ 

$$\forall b \in B$$
  $\sup(A) \leq \sup(A+B) - b$ .

$$\forall b \in B$$
  $b \leq \sup(A+B) - \sup(A)$ .

 $\forall a \in A \qquad \forall b \in B \qquad a = (a+b) - b \le \sup(A+B) - b.$ 

$$orall b \in B \qquad \Big( orall a \in A \qquad a \leq \sup(A+B) - b \Big).$$
 $orall b \in B \qquad \sup(A) \leq \sup(A+B) - b.$ 
 $orall b \in B \qquad b \leq \sup(A+B) - \sup(A).$ 
 $\sup(B) \leq \sup(A+B) - \sup(A).$ 

## Ejercicio.

















#### Ejercicio.

Enunciar y demostrar propiedades similares del ínfimo.

Algunas propiedades del ínfimo salen fácilmente de propiedades del supremo, usando

$$\sup(-A) = -\inf(A).$$

Este camino estará prohibido en el examen.