
Proyecciones en espacios de Hilbert

Estos apuntes están basados en el libro de Conway “A course in functional analysis”.

Objetivos. Estudiar propiedades de proyecciones (ortogonales) que actúan en un espacio
de Hilbert.

Prerrequisitos. Operadores idempotentes en espacios normados, proyección ortogonal
sobre un subespacio cerrado de un espacio de Hilbert.

En este tema suponemos que H es un espacio vectorial complejo.

1 Observación (operadores idempotentes en espacios normados). Sea V un espacio nor-
mado y sea A ∈ B(V ). Se dice que A es idempotente si A2 = A. Si A es idempotente,
entonces I − A también es idempotente. Es fácil demostrar que si A es idempotente,
entonces

im(A) = ker(I − A), im(I − A) = ker(A),

todos estos subespacios de V son cerrados, y el espacio V es una suma directa de ker(A)
e im(A).

2 Observación (proyección ortogonal sobre un subespacio cerrado, repaso). Sea M un
subespacio cerrado de H. Ya sabemos que existe un único operador PM : H → H tal que
para cada x en H

PMx ∈ M, x− PMx ∈ M⊥.

Más aún, ker(PM) = im(PM)⊥.

3 Teorema (criterio de proyección en un espacio de Hilbert). Si E ∈ B(H) tal que
E2 = E, las siguientes condiciones son equivalentes.

(a) ker(E) = im(E)⊥;

(b) E = Pim(E);

(c) ⟨Eh, h⟩ ≥ 0 para cada h en H;

(d) E es hermitiano;
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(e) E es normal.

Demostración. (a)⇒(b). Suponemos que ker(E) = im(E)⊥. Sea M := im(E). Dado h en
H, tenemos que Eh ∈ M y h − Eh = (I − E)h ∈ im(I − E) = ker(E) = M⊥. Por lo
tanto, E = PM .

(b)⇒(a). Suponemos que E = Pim(E). Pongamos M := im(E). Ya sabemos que im(PM) =
M y ker(PM) = M⊥.

(a)⇒(c). Suponemos que ker(E) = im(E)⊥. Dado h en H, tenemos

h = Eh+ (I − E)h,

donde Eh ∈ im(E) y (I −E)h ∈ im(I −E) = ker(E) = im(E)⊥, por eso Eh ⊥ (I −E)h.
Luego

⟨Eh, h⟩ = ⟨Eh,Eh+ (I − E)h⟩ = ⟨Eh,Eh⟩+ ⟨Eh, (I − E)h⟩ = ∥Eh∥2 ≥ 0.

(c)⇒(d). Suponemos que qE(h) ≥ 0 para cada h en H. En particular, esto implica que
qE(h) ∈ R para cada h en H. Luego E es hermitiano.

(d)⇒(e). Suponemos que E∗ = E. Luego E conmuta con E∗.

(e)⇒(a). Suponemos que E es normal. Esto implica que ∥E∗h∥ = ∥Eh∥ para cada h en
H. En particular,

ker(E) = ker(E∗) = im(E)⊥.

4 Teorema (criterio de proyección en términos de la norma). Si E ∈ B(H) tal que
E2 = E y E ̸= 0, entonces

ker(E) = im(E)⊥ ⇐⇒ ∥E∥ = 1.

Demostración. ⇒. Suponemos que ker(E) = im(E)⊥. Para cada h en H, como Eh ⊥
(I − E)h, por el teorema de Pitagoras tenemos que

∥h∥2 = ∥Eh+ (I − E)h∥2 = ∥Eh∥2 + ∥(I − E)h∥2 ≥ ∥Eh∥2.

Luego ∥E∥ ≤ 1. Por otro lado, para cada h en im(E), tenemos que Eh = h y ∥Eh∥ = ∥h∥.
Por lo tanto, ∥E∥ = 1.

⇐. Suponemos que ∥E∥ = 1. Dado h en ker(E)⊥, tenemos lo siguiente.

h− Eh = (I − E)h ∈ im(I − E) = ker(E),
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aśı que
0 = ⟨h− Eh, h⟩ = ∥h∥2 − ⟨Eh, h⟩.

Luego
∥h∥2 = ⟨Eh, h⟩ = |⟨Eh, h⟩| ≤ ∥Eh∥ ∥h∥ ≤ ∥h∥2.

Concluimos que para cada h en ker(E)⊥,

∥Eh∥2 = ∥h∥2 = ⟨Eh, h⟩.

Luego
∥(E − I)h∥2 = ∥Eh∥2 − 2Re(⟨Eh, h⟩) + ∥h∥2 = 0,

aśı que h ∈ ker(I − E) = im(E). Hemos demostrado que

ker(E)⊥ ⊆ im(E).

Por otro lado, dado h ∈ im(E), usamos la descomposición ortogonal: h = h1 + h2, donde
h1 ∈ ker(E) y g2 ∈ ker(E)⊥. En particular, sabemos que g2 ∈ im(E) y Eg2 = g2.
Aplicamos E al vector h:

h = Eh = Eh1 + Eh2 = Eh2 = h2.

Concluimos que
im(E) ⊆ ker(E)⊥.

Juntando estas dos contenciones, obtenemos que im(E) = ker(E)⊥.
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