# La regla de Leibniz para derivar integrales de Lebesgue respecto al parámetro (un tema de análisis real)

Egor Maximenko https://www.egormaximenko.com

Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas México

2024-12-03

#### Objetivos.

• Establecer condiciones suficientes para derivar bajo el signo integral, esto es,

$$\frac{\partial}{\partial y} \int_X f(x,y) d\mu(x) = \int_X \frac{\partial}{\partial y} f(x,y) d\mu(x).$$

Conocer algunas aplicaciones de esta regla.

#### **Prerrequisitos:**

- el concepto de la integral de Lebesgue y sus propiedades básicas,
- el teorema de la convergencia dominada de Lebesgue,
- el criterio de límite en términos de sucesiones (el criterio de Heine),
- la definición de la derivada,
- el teorema del valor medio para funciones complejas.

### Proposición (el teorema del valor medio para funciones complejas)

Sea Y un intervalo de  $\mathbb{R}$  y sea  $\psi \in C(Y, \mathbb{C})$ .

Supongamos que  $\psi$  es derivable en int(Y),  $L \ge 0$ , y

$$\sup_{y\in \mathrm{int}(Y)}|\psi'(y)|\leq L.$$

Entonces para cualesquier  $y_1, y_2$  en Y,

$$|\psi(y_1) - \psi(y_2)| \leq L |y_1 - y_2|.$$

#### Proposición (el teorema del valor medio para funciones complejas)

Sea Y un intervalo de  $\mathbb{R}$  y sea  $\psi \in C(Y, \mathbb{C})$ .

Supongamos que  $\psi$  es derivable en int(Y),  $L \ge 0$ , y

$$\sup_{y\in \mathrm{int}(Y)}|\psi'(y)|\leq L.$$

Entonces para cualesquier  $y_1, y_2$  en Y,

$$|\psi(y_1) - \psi(y_2)| \leq L |y_1 - y_2|.$$

Otra forma de la conclusión:  $\left| \frac{\psi(y_1) - \psi(y_2)}{y_1 - y_2} \right| \le L$ .

Sea 
$$\psi \colon [0,2\pi] \to \mathbb{C}$$
,

$$\psi(t) := e^{it}$$
.

Sea  $\psi \colon [0, 2\pi] \to \mathbb{C}$ ,

$$\psi(t) := e^{it}$$
.

Entonces

$$\psi(2\pi) - \psi(0) =$$

Sea  $\psi \colon [0, 2\pi] \to \mathbb{C}$ ,

$$\psi(t) := e^{it}$$
.

Entonces

$$\psi(2\pi) - \psi(0) = e^{2\pi i} - e^{0i} =$$

Sea  $\psi \colon [0,2\pi] \to \mathbb{C}$ ,

$$\psi(t) := e^{it}$$
.

Entonces

$$\psi(2\pi) - \psi(0) = e^{2\pi i} - e^{0i} = 1 - 1 = 0.$$

Sea  $\psi \colon [0, 2\pi] \to \mathbb{C}$ ,

$$\psi(t) := e^{it}$$
.

**Entonces** 

$$\psi(2\pi) - \psi(0) = e^{2\pi i} - e^{0i} = 1 - 1 = 0.$$

Por otro lado.

$$\psi'(t) =$$

Sea  $\psi \colon [0, 2\pi] \to \mathbb{C}$ ,

$$\psi(t) := e^{it}$$
.

**Entonces** 

$$\psi(2\pi) - \psi(0) = e^{2\pi i} - e^{0i} = 1 - 1 = 0.$$

Por otro lado,

$$\psi'(t) = i e^{it}$$
,

Sea  $\psi \colon [0, 2\pi] \to \mathbb{C}$ ,

$$\psi(t) := e^{it}$$
.

**Entonces** 

$$\psi(2\pi) - \psi(0) = e^{2\pi i} - e^{0i} = 1 - 1 = 0.$$

Por otro lado.

$$\psi'(t) = i e^{i t}, \qquad |\psi'(t)| =$$

Sea  $\psi \colon [0, 2\pi] \to \mathbb{C}$ ,

$$\psi(t) := e^{it}$$
.

**Entonces** 

$$\psi(2\pi) - \psi(0) = e^{2\pi i} - e^{0i} = 1 - 1 = 0.$$

Por otro lado.

$$\psi'(t) = ie^{it}, \qquad |\psi'(t)| = 1.$$



Sea  $\psi \colon [0,2\pi] \to \mathbb{C}$ ,

$$\psi(t) := e^{it}.$$

**Entonces** 

$$\psi(2\pi) - \psi(0) = e^{2\pi i} - e^{0i} = 1 - 1 = 0.$$

Por otro lado.

$$\psi'(t) = i e^{i t}, \qquad |\psi'(t)| = 1.$$

En este ejemplo, no existe t en  $(0,2\pi)$  tal que  $\psi(2\pi) - \psi(0) = \psi'(t) \cdot 2\pi$ .



Sea  $\psi \colon [0,2\pi] o \mathbb{C}$ ,

$$\psi(t) := e^{it}.$$

**Entonces** 

$$\psi(2\pi) - \psi(0) = e^{2\pi i} - e^{0i} = 1 - 1 = 0.$$

Por otro lado.

$$\psi'(t) = i e^{it}, \qquad |\psi'(t)| = 1.$$

En este ejemplo, no existe t en  $(0,2\pi)$  tal que  $\psi(2\pi) - \psi(0) = \psi'(t) \cdot 2\pi$ .

Solamenente se cumple la desigualdad  $|f(2\pi) - f(0)| \le |y_1 - y_2|$ .

000

Si  $f: X \times Y \to \mathbb{C}$ ,  $x \in X$ , entonces  $f_x: Y \to \mathbb{C}$ ,  $f_x(y) := f(x, y)$ .

Si  $f: X \times Y \to \mathbb{C}$ ,  $x \in X$ , entonces  $f_x: Y \to \mathbb{C}$ ,  $f_x(y) := f(x,y)$ .

Denotamos por  $f'_x$  la derivada de la función  $f_x$ :

$$f'_x(y) := \lim_{z \to y} \frac{f(x,z) - f(x,y)}{z - y}.$$

000

Si 
$$f: X \times Y \to \mathbb{C}$$
,  $x \in X$ , entonces  $f_x: Y \to \mathbb{C}$ ,  $f_x(y) := f(x,y)$ .

Denotamos por  $f'_{\star}$  la derivada de la función  $f_{\star}$ :

$$f'_x(y) := \lim_{z \to y} \frac{f(x,z) - f(x,y)}{z - y}.$$

Otra notación buena (la derivada parcial respecto al segundo argumento):

$$(D_2f)(x,y) := \lim_{z \to y} \frac{f(x,z) - f(x,y)}{z - y}, \qquad (\partial_2 f)(x,y) := \lim_{z \to y} \frac{f(x,z) - f(x,y)}{z - y}.$$

Si  $f: X \times Y \to \mathbb{C}$ ,  $x \in X$ , entonces  $f_x: Y \to \mathbb{C}$ ,  $f_x(y) := f(x,y)$ .

Denotamos por  $f'_{\times}$  la derivada de la función  $f_{\times}$ :

$$f'_x(y) := \lim_{z \to y} \frac{f(x,z) - f(x,y)}{z - y}.$$

Otra notación buena (la derivada parcial respecto al segundo argumento):

$$(D_2f)(x,y) := \lim_{z \to y} \frac{f(x,z) - f(x,y)}{z - y}, \qquad (\partial_2 f)(x,y) := \lim_{z \to y} \frac{f(x,z) - f(x,y)}{z - y}.$$

Una notación antigua:  $\frac{\partial f(x,y)}{\partial v}$ .

#### Teorema (la regla de Leibniz para derivar bajo el signo integral)

Sean  $(X, \mathcal{F}, \mu)$  un espacio de medida, Y un intervalo de  $\mathbb{R}$ ,  $f: X \times Y \to \mathbb{C}$ . Suposiciones:

- (S1)  $\forall y \in Y, f^y \in \mathcal{L}^1(X, \mu)$ ;
- (S2) para casi todo x en X. la función  $f_x$  es derivable:
- (S3)  $\exists g \in \mathcal{L}^1(X, \mu, [0, +\infty])$  tal que  $|f'_x(y)| \leq g(x)$  para casi todo  $x \in X$  y  $\forall y \in Y$ .

Definimos  $\Phi \colon Y \to \mathbb{C}$ ,  $\Phi(y) \coloneqq \int_X f^y \ \mathrm{d}\mu = \int_X f(x,y) \ \mathrm{d}\mu(x)$ .

Entonces para cada y en Y la función  $x \mapsto f'_x(y)$  es integrable,  $\Phi$  es derivable en Y, y

$$\Phi'(y) = \int_X f_x'(y) \ \mathrm{d}\mu(x).$$

La condición (S1) implica que Φ está bien definida.

La condición (S1) implica que  $\Phi$  está bien definida.

Usando las condiciones (S2) y (S3) encontremos B en  $\mathcal{F}$  tal que

(B1) 
$$\mu(X \setminus B) = 0$$
,

(B2) 
$$\forall x \in B$$
  $f_x$  es derivable,

(B3) 
$$\forall x \in B \quad \forall y \in Y \quad |f'_x(y)| \leq g(x).$$

La condición (S1) implica que  $\Phi$  está bien definida.

Usando las condiciones (S2) y (S3) encontremos B en  $\mathcal F$  tal que

(B1) 
$$\mu(X \setminus B) = 0$$
,

(B2) 
$$\forall x \in B$$
  $f_x$  es derivable,

(B3) 
$$\forall x \in B \quad \forall y \in Y \quad |f'_x(y)| \leq g(x).$$

Por el teorema del valor medio y la propiedad (B3), obtenemos la siguiente propiedad.

(M) para cualquier x en B y cualesquier y, z en Y con  $z \neq y$ ,

$$\left|\frac{f(x,z)-f(x,y)}{z-y}\right|\leq g(x).$$

Fijamos un punto y en Y.

### Fijamos un punto y en Y.

Definimos 
$$h: X \to \mathbb{C}$$
,  $h(x) := \begin{cases} f'_x(y), & x \in B; \\ 0, & x \in X \setminus B. \end{cases}$ 

Tenemos:

(S2') 
$$\forall x \in B$$
 
$$\lim_{z \to y} \frac{f(x, z) - f(x, y)}{z - y} = h(x),$$
(S3')  $\forall x \in B$  
$$|h(x)| \le g(x),$$

$$|f(x, z) - f(x, y)|$$

(M') 
$$\forall x \in B$$
  $\forall z \in Y \setminus \{y\}$   $\left| \frac{f(x,z) - f(x,y)}{z - y} \right| \leq g(x).$ 

#### Fijamos un punto y en Y.

Definimos 
$$h: X \to \mathbb{C}$$
,  $h(x) := \begin{cases} f'_x(y), & x \in B; \\ 0, & x \in X \setminus B. \end{cases}$ 

Tenemos:

(S2') 
$$\forall x \in B$$
 
$$\lim_{z \to y} \frac{f(x, z) - f(x, y)}{z - y} = h(x),$$
(S3')  $\forall x \in B$  
$$|h(x)| \le g(x),$$
(M')  $\forall x \in B$  
$$\forall z \in Y \setminus \{y\}$$
 
$$\left| \frac{f(x, z) - f(x, y)}{z - y} \right| \le g(x).$$

Queremos demostrar dos afirmaciones:

$$h \in \mathcal{L}^1(X,\mu,\mathbb{C}), \qquad \qquad \lim_{z \to y} rac{\Phi(z) - \Phi(y)}{z - y} = \int_X h \; \mathrm{d}\mu.$$

Sea  $(t_n)_{n\in\mathbb{N}}$  una sucesión en  $Y\setminus\{y\}$  que converge al punto y.

Sea  $(t_n)_{n\in\mathbb{N}}$  una sucesión en  $Y\setminus\{y\}$  que converge al punto y.

Para cada n en  $\mathbb{N}$ , definimos  $q_n \colon X \to \mathbb{C}$ ,

$$q_n(x) := \frac{f(x,t_n) - f(x,y)}{t_n - y} = \frac{f_x(t_n) - f_x(y)}{t_n - y} = \frac{f^{t_n}(x) - f^y(x)}{t_n - y}.$$

Sea  $(t_n)_{n\in\mathbb{N}}$  una sucesión en  $Y\setminus\{y\}$  que converge al punto y.

Para cada n en  $\mathbb{N}$ , definimos  $q_n \colon X \to \mathbb{C}$ ,

$$q_n(x) := \frac{f(x, t_n) - f(x, y)}{t_n - y} = \frac{f_x(t_n) - f_x(y)}{t_n - y} = \frac{f^{t_n}(x) - f^y(x)}{t_n - y}.$$

Por (S2'), para cada x en B,  $q_n(x) \rightarrow h(x)$ .

Sea  $(t_n)_{n\in\mathbb{N}}$  una sucesión en  $Y\setminus\{y\}$  que converge al punto y.

Para cada n en  $\mathbb{N}$ , definimos  $q_n \colon X \to \mathbb{C}$ ,

$$q_n(x) := \frac{f(x, t_n) - f(x, y)}{t_n - y} = \frac{f_x(t_n) - f_x(y)}{t_n - y} = \frac{f^{t_n}(x) - f^y(x)}{t_n - y}.$$

Por (S2'), para cada x en B,  $q_n(x) \rightarrow h(x)$ .

Las funciones  $q_n = \frac{f^{t_n} - f^y}{t_n - y}$  son  $\mathcal{F}$ -medibles, luego h es  $\mathcal{F}$ -medible.

Sea  $(t_n)_{n\in\mathbb{N}}$  una sucesión en  $Y\setminus\{y\}$  que converge al punto y.

Para cada n en  $\mathbb{N}$ , definimos  $q_n \colon X \to \mathbb{C}$ ,

$$q_n(x) := \frac{f(x,t_n) - f(x,y)}{t_n - y} = \frac{f_x(t_n) - f_x(y)}{t_n - y} = \frac{f^{t_n}(x) - f^y(x)}{t_n - y}.$$

Por (S2'), para cada x en B,  $q_n(x) \rightarrow h(x)$ .

Las funciones  $q_n = \frac{f^{t_n} - f^y}{t_n - y}$  son  $\mathcal{F}$ -medibles, luego h es  $\mathcal{F}$ -medible.

Debido a (S3'), podemos concluir que  $h \in \mathcal{L}^1(X, \mu, \mathbb{C})$ .

Ya sabemos que 
$$q_n \xrightarrow{\mu\text{-c.t.p.}} h$$
.

#### Final de la demostración.

Ya sabemos que  $q_n \xrightarrow{\mu\text{-c.t.p.}} h$ .

Por la linealidad de la integral,

$$\frac{\Phi(t_n) - \Phi(y)}{t_n - y} = \frac{1}{t_n - y} \left( \int_X f^{t_n} d\mu - \int_X f^y d\mu \right) = \int_X q_n d\mu.$$

Ya sabemos que  $q_n \xrightarrow{\mu\text{-c.t.p.}} h$ .

Por la linealidad de la integral,

$$\frac{\Phi(t_n) - \Phi(y)}{t_n - y} = \frac{1}{t_n - y} \left( \int_X f^{t_n} d\mu - \int_X f^y d\mu \right) = \int_X q_n d\mu.$$

Por la propiedad (M'),  $|q_n(x)| \le g(x)$  para cada x en B.

#### Final de la demostración.

Ya sabemos que  $q_n \xrightarrow{\mu\text{-c.t.p.}} h$ .

Por la linealidad de la integral.

$$\frac{\Phi(t_n) - \Phi(y)}{t_n - y} = \frac{1}{t_n - y} \left( \int_X f^{t_n} d\mu - \int_X f^y d\mu \right) = \int_X q_n d\mu.$$

Por la propiedad (M'),  $|q_n(x)| \le g(x)$  para cada x en B.

Apliquemos el teorema de la convergencia dominada:

$$\lim_{n\to\infty}\frac{\Phi(t_n)-\Phi(y)}{t_n-y}=\lim_{n\to\infty}\int_X q_n\;\mathrm{d}\mu=\int_X h\;\mathrm{d}\mu.$$

$$\Phi(y) := \int_X f(x,y) \ \mathrm{d}\mu(x),$$

$$\frac{\Phi(t_n) - \Phi(y)}{t_n - y} = \int_X \underbrace{\frac{f(x, t_n) - f(x, y)}{t_n - y}}_{q_n(x)} d\mu(x).$$

$$\Phi(y) := \int_X f(x,y) \, \mathrm{d}\mu(x), \qquad \frac{\Phi(t_n) - \Phi(y)}{t_n - y} = \int_X \underbrace{\frac{f(x,t_n) - f(x,y)}{t_n - y}}_{q_n(x)} \, \mathrm{d}\mu(x).$$

Gracias a (S2), 
$$\forall x \in B \quad \lim_{n \to \infty} q_n(x) = (D_2 f)(x, y).$$

$$\Phi(y) := \int_X f(x,y) \, \mathrm{d}\mu(x), \qquad \frac{\Phi(t_n) - \Phi(y)}{t_n - y} = \int_X \underbrace{\frac{f(x,t_n) - f(x,y)}{t_n - y}}_{g_n(x)} \, \mathrm{d}\mu(x).$$

Gracias a (S2), 
$$\forall x \in B \quad \lim_{n \to \infty} q_n(x) = (D_2 f)(x, y).$$
  
Gracias a (S3),  $\forall x \in B \quad |q_n(x)| \le \sup_{w \in \operatorname{int}(Y)} |(D_2 f)(x, w)| \le g(x).$ 

$$\Phi(y) := \int_X f(x,y) \, \mathrm{d}\mu(x), \qquad \frac{\Phi(t_n) - \Phi(y)}{t_n - y} = \int_X \underbrace{\frac{f(x,t_n) - f(x,y)}{t_n - y}}_{q_n(x)} \, \mathrm{d}\mu(x).$$

Gracias a (S2), 
$$\forall x \in B$$
  $\lim_{n \to \infty} q_n(x) = (D_2 f)(x, y)$ .

Gracias a (S3), 
$$\forall x \in B$$
  $|q_n(x)| \leq \sup_{w \in \text{int}(Y)} |(D_2 f)(x, w)| \leq g(x)$ .

Aplicamos el teorema de la convergencia dominada:

$$\lim_{n\to\infty}\frac{\Phi(t_n)-\Phi(y)}{t_n-y}=\int_X(D_2f)(x,y)\,\mathrm{d}\mu(x).$$

#### Corolario

Sean  $(X, \mathcal{F}, \mu)$  un espacio de medida, Y un intervalo de  $\mathbb{R}$ ,  $f: X \times Y \to \mathbb{C}$ . Suposiciones:

- (S1)  $\forall y \in Y, f^y \in \mathcal{L}^1(X, \mu);$
- (S4) para casi todo x en X,  $f_x \in C^1(Y, \mathbb{C})$ ;
- $(\mathsf{S3}) \ \exists g \in \mathcal{L}^1(X,\mu,[0,+\infty]) \ \mathsf{tal} \ \mathsf{que} \ |f_x'(y)| \leq g(x) \ \mathsf{para} \ \mathsf{casi} \ \mathsf{todo} \ x \in X \ \mathsf{y} \ \forall y \in Y.$

Definimos 
$$\Phi \colon Y \to \mathbb{C}$$
,  $\Phi(y) \coloneqq \int_X f^y \ \mathrm{d}\mu = \int_X f(x,y) \ \mathrm{d}\mu(x)$ .

Entonces  $\Phi \in C^1(Y, \mathbb{C})$ .

**Demostración.** Primero aplicar la regla de Leibniz, luego el teorema sobre la continuidad de la función definida por una integral.

# Regla de Leibniz para derivadas de órdenes superiores

## Ejercicio.

Modificar las condiciones del teorema y demostrar la regla

$$\Phi^{(k)}(x) = \int_X (D_2^k f)(x,y) \,\mathrm{d}\mu(x).$$

#### Corolario

Sean X un subconjunto compacto de  $\mathbb{R}^n$ . Y un intervalo compacto de  $\mathbb{R}$ .

Sea  $f: X \times Y \to \mathbb{C}$ . Se supone:

(C1) 
$$\forall y \in Y$$
,  $f^y \in \mathcal{L}^1(X, \mathbb{C})$ .

(C2) la derivada  $D_2 f$  existe y es continua en  $X \times Y$ .

Definimos

$$\Phi(y) := \int_X f(x,y) \, dx.$$

Entonces  $\Phi \in C^1(Y)$  y

$$\Phi'(y) = \int_X (D_2 f)(x, y) dx.$$

**Idea de demostración.** Gracias a la compacidad,  $D_2f$  es acotada.

# La regla de Leibniz con límites de integración variables

### Ejercicio.

Sean X, Y intervalos abiertos en  $\mathbb{R}$  y sea  $f \in C(X \times Y, \mathbb{C})$ . Se supone que

- $\forall (x,y) \in X \times Y$   $\exists (D_2 f)(x,y),$
- $\exists g \in \mathcal{L}^1(X, [0, +\infty])$   $\forall (x, y) \in X \times Y$   $|(D_2 f)(x, y)| \leq g(x)$ .

Sean  $\varphi, \psi$  funciones derivables  $Y \to X$ . Se define  $\Phi \colon Y \to \mathbb{C}$ ,

$$\Phi(y) := \int_{\varphi(y)}^{\psi(y)} f(x,y) \, \mathrm{d}x.$$

Demostrar que  $\Phi$  es derivable en Y y calcular su derivada.

# Derivadas de la función F

## Ejercicio.

Recordar la definición de la función  $\Gamma$ , demostrar que  $\Gamma \in C^{\infty}((0,+\infty))$  y

$$orall k \in \mathbb{N} \qquad orall x \in (0,+\infty) \qquad \Gamma^{(k)}(x) = \int_0^{+\infty} \mathrm{e}^{-t} \ t^{x-1} (\ln t)^k \ \mathrm{d}t.$$

## Ejercicio.

Demostrar que  $\Gamma''(x) > 0$  para cada x > 0.

# La derivada de la transformada de Fourier de una función

La transformada de Fourier hace un papel muy importante en análisis. La siguiente aplicación ya sería suficiente para justificar nuestros esfuerzos.

**Ejercicio.** Sea  $f \in \mathcal{L}^1(\mathbb{R}, \mathbb{C})$ . Supongamos que  $\int_{\mathbb{R}} |x| |f(x)| dx < +\infty$ . Denotemos por g la transformada de Fourier de f:

$$g(\xi) \coloneqq \widehat{f}(\xi) \coloneqq \int_{\mathbb{R}} f(x) e^{-2\pi i \, \xi x} \, dx.$$

Mostrar que

$$g'(\xi) = -2\pi i \int_{\mathbb{R}} x f(x) e^{-2\pi i \xi x} dx.$$

Aplicaciones 0000000000000

**Ejercicio.** Sea S un subconjunto medible de  $\mathbb{R}^n$ 

y sean  $f \in \mathcal{M}(S, \mathbb{C})$ ,  $g \in \mathcal{M}(S, (0, +\infty))$ ,  $\alpha > 0$ . Supongamos que

$$\int_{S} e^{-\alpha g(x)} |f(x)| dx < +\infty.$$

Definimos  $\Phi: (\alpha, +\infty) \to \mathbb{C}$ ,

$$\Phi(\lambda) := \int_{S} e^{-\lambda g(x)} f(x) dx.$$

Mostrar que  $\Phi$  está bien definida,  $\Phi \in C^{\infty}((\alpha, +\infty), \mathbb{C})$ , y

$$\forall k \in \mathbb{N} \qquad \forall \lambda > \alpha \qquad \Phi^{(k)}(\lambda) = (-1)^k \int_{\mathcal{S}} e^{-\lambda g(x)} (g(x))^k f(x) dx.$$

**Ejercicio.** Sean  $\lambda > 0$ ,  $k \in \mathbb{N}$ . Calcular la integral

$$\int_0^{+\infty} e^{-\lambda x} x^k dx.$$

# Un camino para calcular la integral de Poisson

**Ejercicio.** Definimos  $f: \mathbb{R} \to (0, +\infty)$ ,  $g: \mathbb{R} \to (0, +\infty)$ ,

$$f(x) := \left(\int_0^x e^{-t^2} dt\right)^2, \qquad g(x) := \int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1} dt.$$

Demostrar que para cada x en  $\mathbb{R}$ 

$$f'(x) + g'(x) = 0,$$
  $f(x) + g(x) = \frac{\pi}{4}.$ 

Demostrar la siguiente fórmula:

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

### Ejercicio.

Definimos  $f: [0, +\infty) \times (0, +\infty) \to \mathbb{R}$ ,

$$f(\alpha,x) := \frac{1 - e^{-\alpha x^2}}{x^2}.$$

Definimos  $g: [0, +\infty) \to \mathbb{R}$ ,

$$g(\alpha) := \int_0^{+\infty} f(\alpha, x) dx < +\infty.$$

Mostrar que  $g \in C([0, +\infty), \mathbb{R})$ .

Probar que se puede aplicar la regla de Leibniz.

Calcular explícitamente  $g(\alpha)$ .

# Recordatorio: la ecuación diferencial que define la función exponencial

Sean  $\alpha \in \mathbb{R}$ ,  $\beta > 0$ , y sea  $f \in C([0, +\infty))$  tal que f derivable en  $(0, +\infty)$ ,

$$\forall t \in (0, +\infty)$$
  $f'(t) = \alpha f(t)$ 

У

$$f(0) = \beta$$
.

Entonces se sabe que

$$\forall t \in [0, +\infty)$$
  $f(t) = \beta e^{\alpha t}$ .

Ejercicio. Recordar una demostración de este hecho.

**Ejercicio.** Fijamos a > 0 y definimos  $\Phi: [0, +\infty) \to \mathbb{R}$ ,

$$\Phi(b) := \int_0^{+\infty} e^{-ax^2} \cos(bx) \ dx.$$

Establecer la relación

$$\Phi'(b) = -\frac{b}{2a}\Phi(b).$$

Demostrar que

$$\int_{0}^{+\infty} e^{-ax^{2}} \cos bx \, dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-\frac{b^{2}}{4a}}.$$