Teorema de Lebesgue sobre la derivada de una función monótona (un tema de análisis real)

Egor Maximenko http://www.egormaximenko.com

Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas México

29 de octubre de 2024

Objetivo

Estudiar la demostración de los siguientes dos resultados de Lebesgue.

En algunos libros estos dos resultados se juntan en un teorema.

Objetivo

Estudiar la demostración de los siguientes dos resultados de Lebesgue.

En algunos libros estos dos resultados se juntan en un teorema.

Teorema (sobre la derivada de una función creciente)

Sean $a, b \in \mathbb{R}$, a < b, y sea $f : [a, b] \to \mathbb{R}$ una función creciente.

Entonces, f'(x) existe para c.t.p. x en (a, b).

Objetivo

Estudiar la demostración de los siguientes dos resultados de Lebesgue.

En algunos libros estos dos resultados se juntan en un teorema.

Teorema (sobre la derivada de una función creciente)

Sean $a, b \in \mathbb{R}$, a < b, y sea $f : [a, b] \to \mathbb{R}$ una función creciente.

Entonces, f'(x) existe para c.t.p. x en (a, b).

Proposición (sobre la integral de la derivada de una función creciente)

Sean $a, b \in \mathbb{R}$, a < b, y sea $f : [a, b] \to \mathbb{R}$ una función creciente.

Entonces, f' es medible y

$$\int_{[a,b]} f' \, \mathrm{d}\mu \le f(b) - f(a).$$

Contenido

- Herramientas
- Reducción al lema principal
- 3 Lema principal
- 4 La integral de la derivada

Plan

Herramientas •0000000000

- Herramientas
- 3 Lema principal
- 4 La integral de la derivada

Cubiertas de Vitali (definición)

Herramientas 0000000000

> $\mu := \mathsf{Ia} \; \mathsf{medida} \; \mathsf{de} \; \mathsf{Lebesgue} \; \mathsf{en} \; \mathbb{R},$ $\mu^* := \text{la medida exterior asociada a } \mu.$

Cubiertas de Vitali (definición)

 $\mu \coloneqq$ la medida de Lebesgue en \mathbb{R} , $\mu^* \coloneqq$ la medida exterior asociada a μ .

Sean $X \subseteq \mathbb{R}$, $\mathcal{V} \subseteq 2^{\mathbb{R}}$. Se dice que \mathcal{V} es una cubierta de Vitali de X, si:

- 1) $\forall A \in \mathcal{V} \quad \Big(A \text{ es un intervalo} \quad \land \quad \mu(A) > 0 \Big),$
- 2) $\forall x \in X \quad \forall \varepsilon > 0 \quad \exists A \in \mathcal{V} \quad (x \in A \quad \land \quad \mu(A) < \varepsilon).$

Lema de Vitali (repaso)

Teorema

Sean $X \subseteq \mathbb{R}$, $\mu^*(X) < +\infty$, \mathcal{V} una cubierta de Vitali de X, $\varepsilon > 0$.

Entonces, existen $n\in\mathbb{N}$, $A_1,\ldots,A_n\in\mathcal{V}$ tales que A_1,\ldots,A_n son disjuntos a pares y

$$\mu^*\left(X\setminus\left(\bigcup_{k=1}^nA_k\right)\right)<\varepsilon.$$

Derivadas de Dini (definición)

Sean A un invervalo de \mathbb{R} , $f: A \to \mathbb{R}$ una función, $x \in \text{int}(A)$.

$$(D^+f)(x) := \limsup_{t \to x^+} \frac{f(t) - f(x)}{t - x}, \qquad (D_+f)(x) := \liminf_{t \to x^+} \frac{f(t) - f(x)}{t - x}.$$

$$(D^-f)(x) := \limsup_{t \to x^-} \frac{f(t) - f(x)}{t - x}, \qquad (D_-f)(x) := \liminf_{t \to x^-} \frac{f(t) - f(x)}{t - x}.$$

Propiedades elementales de las derivadas de Dini (repaso)

Proposición

$$(D_+f)(x) \leq (D^+f)(x), \qquad (D_-f)(x) \leq (D^-f)(x).$$

Propiedades elementales de las derivadas de Dini (repaso)

Proposición

$$(D_+f)(x) \leq (D^+f)(x), \qquad (D_-f)(x) \leq (D^-f)(x).$$

Proposición

f es derivable en x si, y solo si,

$$(D^+f)(x) \le (D_-f)(x)$$
 \land $(D^-f)(x) \le (D_+f)(x).$

Proposición

Herramientas 00000000000

Sean $P \subseteq \overline{\mathbb{R}}$, $u \in \mathbb{R}$, $\inf(P) > u$. Entonces,

Algunas propiedades de sup e inf

Proposición

Herramientas 00000000000

Sean $P \subseteq \overline{\mathbb{R}}$, $u \in \mathbb{R}$, $\inf(P) > u$. Entonces,

$$\forall p \in P \qquad p > u.$$

Algunas propiedades de sup e inf

Proposición

Herramientas 00000000000

Sean $P \subseteq \overline{\mathbb{R}}$, $u \in \mathbb{R}$, $\inf(P) > u$. Entonces,

$$\forall p \in P \qquad p > u.$$

Proposición

Sean $P \subseteq \overline{\mathbb{R}}$, $u \in \mathbb{R}$, $\sup(P) > u$. Entonces,

Algunas propiedades de sup e inf

Proposición

Herramientas 00000000000

Sean $P \subseteq \overline{\mathbb{R}}$, $u \in \mathbb{R}$, $\inf(P) > u$. Entonces,

$$\forall p \in P \qquad p > u.$$

Proposición

Sean $P \subseteq \overline{\mathbb{R}}$, $u \in \mathbb{R}$, $\sup(P) > u$. Entonces,

$$\exists p \in P \qquad p > u.$$

Sean A un intervalo, $f: A \to \mathbb{R}$, $y \in \text{int}(A)$, $u \in \mathbb{R}$, $(D^+f)(y) > u$. Entonces,

$$\forall \delta > 0 \qquad \exists \eta \in (0, \delta) \qquad \Big(y + \eta \in A \qquad \land \qquad f(y + \eta) - f(y) > u \, \eta \Big).$$

Lema principal

Sean A un intervalo, $f: A \to \mathbb{R}$, $y \in \text{int}(A)$, $u \in \mathbb{R}$, $(D^+f)(y) > u$. Entonces,

$$\forall \delta > 0 \qquad \exists \eta \in (0, \delta) \qquad \left(y + \eta \in A \qquad \land \qquad f(y + \eta) - f(y) > u \, \eta \right).$$

Demostración. Tenemos que $\inf_{\delta>0} \sup_{t\in(y,y+\delta)\cap A} \frac{f(t)-f(y)}{t-y} = (D^+f)(y) > u.$

Sean A un intervalo, $f: A \to \mathbb{R}$, $y \in \text{int}(A)$, $u \in \mathbb{R}$, $(D^+f)(y) > u$. Entonces,

$$\forall \delta > 0 \qquad \exists \eta \in (0, \delta) \qquad \Big(y + \eta \in A \qquad \land \qquad f(y + \eta) - f(y) > u \, \eta \Big).$$

Demostración. Tenemos que
$$\inf_{\delta>0} \sup_{t\in (y,y+\delta)\cap A} \frac{f(t)-f(y)}{t-y} = (D^+f)(y)>u.$$

Sea $\delta > 0$. Entonces,

Sean A un intervalo, $f: A \to \mathbb{R}$, $y \in \text{int}(A)$, $u \in \mathbb{R}$, $(D^+f)(y) > u$. Entonces,

$$\forall \delta > 0 \qquad \exists \eta \in (0, \delta) \qquad \Big(y + \eta \in A \qquad \land \qquad f(y + \eta) - f(y) > u \, \eta \Big).$$

Demostración. Tenemos que $\inf_{\delta>0}\sup_{t\in(y,y+\delta)\cap A}\frac{f(t)-f(y)}{t-y}=(D^+f)(y)>u.$ Sea $\delta>0$. Entonces, $\sup_{t\in(y,y+\delta)\cap A}\frac{f(t)-f(y)}{t-y}>u.$

Sean A un intervalo, $f: A \to \mathbb{R}$, $y \in \text{int}(A)$, $u \in \mathbb{R}$, $(D^+f)(y) > u$. Entonces,

$$\forall \delta > 0 \qquad \exists \eta \in (0, \delta) \qquad \Big(y + \eta \in A \qquad \land \qquad f(y + \eta) - f(y) > u \, \eta \Big).$$

Demostración. Tenemos que $\inf_{\delta>0} \sup_{t\in(y,y+\delta)\cap A} \frac{f(t)-f(y)}{t-y} = (D^+f)(y)>u.$

Sea $\delta>0$. Entonces, $\sup_{t\in(y,y+\delta)\cap A}\frac{f(t)-f(y)}{t-y}>u.$ Luego existe t en $(y,y+\delta)\cap A$ tal que $\frac{f(t)-f(y)}{t-y}>u.$

Pongamos $\eta = t - y$.

Análisis de la desigualdad $(D_-f)(x) < v$

Ejercicio

Sean A un intervalo, $f: A \to \mathbb{R}$, $x \in \text{int}(A)$, $v \in \mathbb{R}$.

Supongamos que $(D_-f)(x) < v$. Demostrar que

$$\forall \delta > 0 \qquad \exists \xi \in (0, \delta) \qquad \left(x - \xi \in A \qquad \land \qquad f(x) - f(x - \xi) < v \, \xi\right).$$

Un lema sobre intervalos

Supongamos que $m, n \in \mathbb{N}$.

$$a_1 \leq b_1 \leq a_2 \leq b_2 \leq \ldots \leq a_m \leq b_m,$$
 $c_1 \leq d_1 \leq c_2 \leq d_2 \leq \ldots \leq c_n \leq d_n,$ $\forall k \in \{1, \ldots, n\} \qquad \exists j \in \{1, \ldots, m\} \qquad [c_k, d_k] \subseteq [a_j, b_j].$

Lema principal

Entonces.

$$\sum_{k=1}^{n} (d_k - c_k) \leq \sum_{j=1}^{m} (b_j - a_j).$$

Ejemplo para el lema

En este ejemplo

$$(d_1-c_1)+(d_2-c_2)+(d_3-c_3)\leq (b_1-a_1)+(b_2-a_2).$$

Ejemplo para el lema

En este ejemplo

$$(d_1-c_1)+(d_2-c_2)+(d_3-c_3)\leq (b_1-a_1)+(b_2-a_2).$$

Problema. Escribir bien una demostración general.

Sugerencia: inducción sobre n.

Sean $f: [\alpha, \beta] \to \mathbb{R}$ una función creciente,

$$[x_1-\xi_1,x_1],\ldots,[x_m-\xi_m,x_m]$$
 una lista disjunta de intervalos $\subseteq [\alpha,\beta]$,

$$[y_1, y_1 + \eta_1], \dots, [y_n, y_n + \eta_n]$$
 una lista disjunta de intervalos,

$$\forall k \in \{1,\ldots,n\}$$
 $\exists j \in \{1,\ldots,m\}$ $[y_k,y_k+\eta_k] \subseteq [x_j-\xi_j,x_j].$

Entonces
$$\sum_{k=1}^{n} (f(y_k + \eta_k) - f(y_k)) \le \sum_{j=1}^{n} (f(x_j) - f(x_j - \xi_j)).$$

Sean $f: [\alpha, \beta] \to \mathbb{R}$ una función creciente,

$$[x_1 - \xi_1, x_1], \dots, [x_m - \xi_m, x_m]$$
 una lista disjunta de intervalos $\subseteq [\alpha, \beta]$,

 $[y_1,y_1+\eta_1],\ldots,[y_n,y_n+\eta_n]$ una lista disjunta de intervalos,

$$\forall k \in \{1,\ldots,n\} \qquad \exists j \in \{1,\ldots,m\} \qquad [y_k,y_k+\eta_k] \subseteq [x_j-\xi_j,x_j].$$

Entonces
$$\sum_{k=1}^{n} (f(y_k + \eta_k) - f(y_k)) \le \sum_{j=1}^{n} (f(x_j) - f(x_j - \xi_j)).$$

$$a_i =$$

Sean $f: [\alpha, \beta] \to \mathbb{R}$ una función creciente,

$$[x_1 - \xi_1, x_1], \dots, [x_m - \xi_m, x_m]$$
 una lista disjunta de intervalos $\subseteq [\alpha, \beta]$,

 $[y_1, y_1 + \eta_1], \dots, [y_n, y_n + \eta_n]$ una lista disjunta de intervalos,

$$\forall k \in \{1,\ldots,n\} \qquad \exists j \in \{1,\ldots,m\} \qquad [y_k,y_k+\eta_k] \subseteq [x_j-\xi_j,x_j].$$

Entonces
$$\sum_{k=1}^{n} (f(y_k + \eta_k) - f(y_k)) \le \sum_{j=1}^{n} (f(x_j) - f(x_j - \xi_j)).$$

$$a_j = f(x_j - \xi_j), \qquad b_j =$$

Sean $f: [\alpha, \beta] \to \mathbb{R}$ una función creciente,

$$[x_1-\xi_1,x_1],\ldots,[x_m-\xi_m,x_m]$$
 una lista disjunta de intervalos $\subseteq [\alpha,\beta]$,

 $[y_1, y_1 + \eta_1], \dots, [y_n, y_n + \eta_n]$ una lista disjunta de intervalos,

$$\forall k \in \{1,\ldots,n\}$$
 $\exists j \in \{1,\ldots,m\}$ $[y_k,y_k+\eta_k] \subseteq [x_j-\xi_j,x_j].$

Entonces
$$\sum_{k=1}^{n} (f(y_k + \eta_k) - f(y_k)) \le \sum_{j=1}^{n} (f(x_j) - f(x_j - \xi_j)).$$

$$a_i = f(x_i - \xi_i),$$
 $b_i = f(x_i),$ $c_k =$

Sean $f: [\alpha, \beta] \to \mathbb{R}$ una función creciente,

$$[x_1 - \xi_1, x_1], \dots, [x_m - \xi_m, x_m]$$
 una lista disjunta de intervalos $\subseteq [\alpha, \beta]$,

 $[y_1,y_1+\eta_1],\ldots,[y_n,y_n+\eta_n]$ una lista disjunta de intervalos,

$$\forall k \in \{1,\ldots,n\}$$
 $\exists j \in \{1,\ldots,m\}$ $[y_k,y_k+\eta_k] \subseteq [x_j-\xi_j,x_j].$

Entonces
$$\sum_{k=1}^{n} (f(y_k + \eta_k) - f(y_k)) \le \sum_{j=1}^{m} (f(x_j) - f(x_j - \xi_j)).$$

$$a_i = f(x_i - \xi_i),$$
 $b_i = f(x_i),$ $c_k = f(y_k),$ $d_k =$

Sean $f: [\alpha, \beta] \to \mathbb{R}$ una función creciente,

$$[x_1 - \xi_1, x_1], \dots, [x_m - \xi_m, x_m]$$
 una lista disjunta de intervalos $\subseteq [\alpha, \beta]$,

 $[y_1,y_1+\eta_1],\ldots,[y_n,y_n+\eta_n]$ una lista disjunta de intervalos,

$$\forall k \in \{1,\ldots,n\}$$
 $\exists j \in \{1,\ldots,m\}$ $[y_k,y_k+\eta_k] \subseteq [x_j-\xi_j,x_j].$

Entonces
$$\sum_{k=1}^{n} (f(y_k + \eta_k) - f(y_k)) \le \sum_{j=1}^{m} (f(x_j) - f(x_j - \xi_j)).$$

$$a_{i} = f(x_{i} - \xi_{i}),$$
 $b_{i} = f(x_{i}),$ $c_{k} = f(y_{k}),$ $d_{k} = f(y_{k} + \eta_{k}).$

Plan

- Reducción al lema principal
- 3 Lema principal
- 4 La integral de la derivada

Sean $a, b \in \mathbb{R}$, a < b, y sea $f : [a, b] \to \mathbb{R}$ una función creciente.

Entonces f'(x) existe para c.t.p. x en (a, b).

Es suficiente verificar que para c.t.p. x

$$(D^+f)(x) \le (D_-f)(x), \qquad (D^-f)(x) \le (D_+f)(x).$$

Vamos a demostrar solamente que $D^+f \leq D_-f$ en c.t.p. ($D^-f \leq D_+f$ es similar).

Reducción del teorema al lema principal

Lema

$$(D^+f)(x) > (D_-f)(x)$$
 si, y solo si,

$$\exists u, v \in \mathbb{Q}$$
 $((D^+f)(x) > u \land u > v \land v > (D_-f)(x)).$

Reducción del teorema al lema principal

Lema

$$(D^+f)(x) > (D_-f)(x)$$
 si, y solo si,

$$\exists u, v \in \mathbb{Q}$$
 $((D^+f)(x) > u \land u > v \land v > (D_-f)(x)).$

Demostración.

Reducción del teorema al lema principal

Lema

$$(D^+f)(x) > (D_-f)(x)$$
 si, y solo si,

$$\exists u, v \in \mathbb{Q}$$
 $((D^+f)(x) > u \land u > v \land v > (D_-f)(x)).$

Demostración.

 \Longrightarrow por la densidad de $\mathbb Q$ en $\mathbb R$.

Reducción del teorema al lema principal

Lema

$$(D^+f)(x) > (D_-f)(x)$$
 si, y solo si,

$$\exists u, v \in \mathbb{Q}$$
 $((D^+f)(x) > u \land u > v \land v > (D_-f)(x)).$

Demostración.

 \implies por la densidad de \mathbb{O} en \mathbb{R} .

 \iff por la transitividad de >.

Reducción del teorema al lema principal

Para cada u, v en \mathbb{O} con u > v, pongamos

$$E_{u,v} := \left\{ x \in (a,b) \colon \quad (D^+f)(x) > u \quad \wedge \quad v > (D_-f)(x) \right\}.$$

Entonces.

$$\left\{x\in(a,b)\colon\quad (D^+f)(x)>(D_-f)(x)\right\}=\bigcup_{u,v\in\mathbb{Q}\colon u>v}E_{u,v},$$

Es suficiente probar que $\mu^*(E_{u,v}) = 0$.

- 3 Lema principal
- 4 La integral de la derivada

Parte principal de la demostración del teorema

Al demostrar el siguiente resultado, tendremos demostrado el teorema sobre la derivada de una función creciente.

Lema (la parte principal del teorema de la derivada de función creciente)

Sean a < b, $f \colon [a,b] o \mathbb{R}$ una función creciente, $u,v \in \mathbb{R}$, u > v,

$$E_{u,v} := \left\{ x \in (a,b) \colon \quad (D^+f)(x) > u \quad \wedge \quad (D_-f)(x) < v \right\}.$$

Entonces, $\mu^*(E_{u,v}) = 0$.

$$E_{u,v} := \left\{ x \in (a,b) \colon \quad (D^+f)(x) > u \quad \wedge \quad (D_-f)(x) < v \right\}, \qquad s := \mu^*(E_{u,v}).$$

Idea intuitiva de la demostración

$$E_{u,v} := \left\{ x \in (a,b) \colon \quad (D^+f)(x) > u \quad \wedge \quad (D_-f)(x) < v \right\}, \qquad s := \mu^*(E_{u,v}).$$

Vamos a encontrar dos listas de intervalos, $[x_j - \xi_j, x_j]_{j=1}^m$, $[y_k, y_k + \eta_k]_{k=1}^n$, tales que

Idea intuitiva de la demostración

$$E_{u,v} := \left\{ x \in (a,b) \colon \quad (D^+f)(x) > u \quad \wedge \quad (D_-f)(x) < v \right\}, \qquad s := \mu^*(E_{u,v}).$$

Vamos a encontrar dos listas de intervalos, $[x_j - \xi_j, x_j]_{j=1}^m$, $[y_k, y_k + \eta_k]_{k=1}^n$, tales que

$$\bullet \sum_{i=1}^m \xi_j \approx s, \qquad \sum_{k=1}^n \eta_k \approx s,$$

Idea intuitiva de la demostración

$$E_{u,v} := \left\{ x \in (a,b) \colon \quad (D^+f)(x) > u \quad \wedge \quad (D_-f)(x) < v \right\}, \qquad s := \mu^*(E_{u,v}).$$

Vamos a encontrar dos listas de intervalos, $[x_j - \xi_j, x_j]_{j=1}^m$, $[y_k, y_k + \eta_k]_{k=1}^n$, tales que

$$\bullet \sum_{j=1}^{m} \xi_j \approx s, \qquad \sum_{k=1}^{n} \eta_k \approx s,$$

• cada $[y_k, y_k + \eta_k]$ está contenido en uno de los $[x_j - \xi_j, x_j]$,

$$E_{u,v} := \left\{ x \in (a,b) \colon \quad (D^+f)(x) > u \quad \wedge \quad (D_-f)(x) < v \right\}, \qquad s := \mu^*(E_{u,v}).$$

Vamos a encontrar dos listas de intervalos, $[x_j - \xi_j, x_j]_{j=1}^m$, $[y_k, y_k + \eta_k]_{k=1}^n$, tales que

$$\bullet \sum_{j=1}^{m} \xi_j \approx s, \qquad \sum_{k=1}^{n} \eta_k \approx s,$$

- cada $[y_k, y_k + \eta_k]$ está contenido en uno de los $[x_i \xi_i, x_i]$,
- en los intervalos $[x_i \xi_i, x_i]$ la función f crece lentamente,

$$E_{u,v} := \left\{ x \in (a,b) \colon \quad (D^+f)(x) > u \quad \wedge \quad (D_-f)(x) < v \right\}, \qquad s := \mu^*(E_{u,v}).$$

Vamos a encontrar dos listas de intervalos, $[x_j - \xi_j, x_j]_{j=1}^m$, $[y_k, y_k + \eta_k]_{k=1}^n$, tales que

$$\bullet \sum_{j=1}^m \xi_j \approx s, \qquad \sum_{k=1}^n \eta_k \approx s,$$

- cada $[y_k, y_k + \eta_k]$ está contenido en uno de los $[x_i \xi_i, x_i]$,
- en los intervalos $[x_i \xi_i, x_i]$ la función f crece lentamente,
- en los intervalos $[y_k, y_k + \eta_k]$ la función f crece rápidamente.

ldea intuitiva de la demostración

$$E_{u,v} := \left\{ x \in (a,b) \colon \quad (D^+f)(x) > u \quad \wedge \quad (D_-f)(x) < v \right\}, \qquad s := \mu^*(E_{u,v}).$$

Lema principal

Vamos a encontrar dos listas de intervalos, $[x_j - \xi_j, x_j]_{j=1}^m$, $[y_k, y_k + \eta_k]_{k=1}^n$, tales que

$$\bullet \sum_{j=1}^m \xi_j \approx s, \qquad \sum_{k=1}^n \eta_k \approx s,$$

- cada $[y_k, y_k + \eta_k]$ está contenido en uno de los $[x_i \xi_i, x_i]$,
- en los intervalos $[x_i \xi_i, x_i]$ la función f crece lentamente,
- en los intervalos $[y_k, y_k + \eta_k]$ la función f crece rápidamente.

Luego tendremos us < vs, lo cual es posible solo cuando s = 0.

Demostración.

$$E_{u,v} := \Big\{ x \in (a,b) \colon \quad (D^+f)(x) > u \quad \wedge \quad (D_-f)(x) < v \Big\}.$$

Demostración.

$$E_{u,v} := \left\{ x \in (a,b) \colon \quad (D^+f)(x) > u \quad \wedge \quad (D_-f)(x) < v \right\}.$$

Lema principal

1. Sea $s = \mu^*(E_{\mu,\nu})$. Elijamos $\varepsilon > 0$ arbitrario.

Usando una descripción de μ^* encontramos G abierto tal que

$$E_{u,v} \subseteq G \subseteq (a,b), \qquad \mu(G) < s + \varepsilon.$$

$$E_{u,v} = \left\{ x \in (a,b) \colon \quad (D^+f)(x) > u \quad \land \quad (D_-f)(x) < v \right\} \quad \subseteq \quad G \quad \subseteq \quad (a,b).$$

$$E_{u,v} = \left\{ x \in (a,b) \colon (D^+f)(x) > u \land (D_-f)(x) < v \right\} \subseteq G \subseteq (a,b).$$

2. Para cada x en $E_{u,v}$ y cada $\delta > 0$, usando la condición $(D_-f)(x) < v$, encontramos $\xi_{x,\delta}$ en $(0,\delta)$ tal que

$$x - \xi_{\delta,x} \in G$$
, $f(x) - f(x - \xi_{\delta,x}) < v \xi_{\delta,x}$.

$$E_{u,v} = \left\{ x \in (a,b) \colon (D^+f)(x) > u \land (D_-f)(x) < v \right\} \subseteq G \subseteq (a,b).$$

2. Para cada x en $E_{\mu,\nu}$ y cada $\delta > 0$, usando la condición $(D_-f)(x) < \nu$, encontramos $\xi_{x,\delta}$ en $(0,\delta)$ tal que

$$x - \xi_{\delta,x} \in G$$
, $f(x) - f(x - \xi_{\delta,x}) < v \xi_{\delta,x}$.

La colección $\{[x - \xi_{\delta,x}, x]: x \in E_{u,v}, \delta > 0\}$ es una cubierta de Vitali de $E_{u,v}$.

3. El lema de Vitali nos da una subcubierta disjunta $([x_i - \xi_i, x_i])_{1 \le i \le m}$ tal que

$$\mu^*\left(E_{u,v}\setminus\left(\bigcup_{j=1}^m[x_j-\xi_j,x_j]\right)\right)<\varepsilon.$$

3. El lema de Vitali nos da una subcubierta disjunta $([x_i - \xi_i, x_i])_{1 \le i \le m}$ tal que

$$\mu^*\left(E_{u,v}\setminus\left(\bigcup_{j=1}^m[x_j-\xi_j,x_j]\right)\right)<\varepsilon.$$

Pongamos

$$A \coloneqq E_{u,v} \cap \left(\bigcup_{j=1}^m (x_j - \xi_j, x_j)\right).$$

Por la propiedad subaditiva de μ^* , $\mu^*(A) > s - \varepsilon$.

3. El lema de Vitali nos da una subcubierta disjunta $([x_i - \xi_i, x_i])_{1 \le i \le m}$ tal que

$$\mu^* \left(E_{u,v} \setminus \left(\bigcup_{j=1}^m [x_j - \xi_j, x_j] \right) \right) < \varepsilon.$$

Pongamos

$$A \coloneqq \mathsf{E}_{u,v} \cap \left(\bigcup_{j=1}^m (x_j - \xi_j, x_j) \right).$$

Por la propiedad subaditiva de μ^* , $\mu^*(A) > s - \varepsilon$.

Por otro lado,

$$\sum_{j=1}^{m} \xi_j = \mu \left(\bigcup_{j=1}^{m} (x_j - \xi_j, x_j) \right) \leq \mu(G) < s + \varepsilon.$$

4. Dados y en A y $\delta > 0$, primero encontramos j en $\{1, \ldots, m\}$ tal que $y \in (x_i - \xi_i, x_i)$.

$$A = E_{u,v} \cap \left(\bigcup_{j=1}^m (x_j - \xi_j, x_j) \right), \qquad \mu^*(A) > s - \varepsilon.$$

4. Dados y en A y $\delta > 0$, primero encontramos j en $\{1, \ldots, m\}$ tal que $y \in (x_i - \xi_i, x_i)$. Luego, usando la condición $(D^+f)(y) > u$, encontramos $\eta_{v,\delta}$ en $(0,\delta)$ tal que

$$y + \eta_{y,\delta} \in (x_j - \xi_j, x_j), \qquad f(y + \eta_{y,\delta}) - f(y) > u \, \eta_{y,\delta}.$$

$$A = E_{u,v} \cap \left(\bigcup_{j=1}^m (x_j - \xi_j, x_j)\right), \qquad \mu^*(A) > s - \varepsilon.$$

4. Dados y en A y $\delta > 0$, primero encontramos j en $\{1, \ldots, m\}$ tal que $y \in (x_i - \xi_i, x_i)$. Luego, usando la condición $(D^+f)(y) > u$, encontramos $\eta_{v,\delta}$ en $(0,\delta)$ tal que

$$y + \eta_{y,\delta} \in (x_j - \xi_j, x_j), \qquad f(y + \eta_{y,\delta}) - f(y) > u \, \eta_{y,\delta}.$$

La colección $\{[y, y + \eta_{y,\delta}]: y \in A, \delta > 0\}$ es una cubierta de Vitali de A.

$$A = E_{u,v} \cap \left(\bigcup_{j=1}^m (x_j - \xi_j, x_j)\right), \qquad \mu^*(A) > s - \varepsilon.$$

4. Dados y en A y $\delta > 0$, primero encontramos j en $\{1, \ldots, m\}$ tal que $y \in (x_i - \xi_i, x_i)$. Luego, usando la condición $(D^+f)(y) > u$, encontramos $\eta_{v,\delta}$ en $(0,\delta)$ tal que

$$y + \eta_{y,\delta} \in (x_j - \xi_j, x_j), \qquad f(y + \eta_{y,\delta}) - f(y) > u \, \eta_{y,\delta}.$$

La colección $\{[y, y + \eta_{v,\delta}]: y \in A, \delta > 0\}$ es una cubierta de Vitali de A.

Sea $([y_k, y_k + \eta_k])_{1 \le k \le n}$ una subcubierta finita disjunta tal que $\sum \eta_k > s - 2\varepsilon$.

Final de la demostración

existe i tal que $(y_k, y_k + \eta_k) \subseteq (x_i - \xi_i, x_i)$. Luego 5. Para cada k.

$$\sum_{k=1}^{n} (f(y_k + \eta_k) - f(y_k)) \leq \sum_{i=1}^{m} (f(x_i + \xi_i) - f(x_i))$$

Final de la demostración

5. Para cada k, existe i tal que $(y_k, y_k + \eta_k) \subseteq (x_i - \xi_i, x_i)$. Luego

$$\sum_{k=1}^{n} (f(y_k + \eta_k) - f(y_k)) \leq \sum_{j=1}^{m} (f(x_j + \xi_j) - f(x_j))$$

$$\vee \qquad \qquad \wedge$$

$$u \sum_{k=1}^{n} \eta_k \qquad \qquad v \sum_{j=1}^{m} \xi_j$$

Final de la demostración

5. Para cada k, existe j tal que $(y_k, y_k + \eta_k) \subseteq (x_i - \xi_i, x_i)$. Luego

$$\sum_{k=1}^{n} (f(y_k + \eta_k) - f(y_k)) \leq \sum_{j=1}^{m} (f(x_j + \xi_j) - f(x_j))$$

$$\vee \qquad \qquad \wedge$$

$$u \sum_{k=1}^{n} \eta_k \qquad \qquad v \sum_{j=1}^{m} \xi_j$$

$$\vee \qquad \qquad \wedge$$

$$u(s - 2\varepsilon) \qquad \qquad v(s + \varepsilon).$$

Lema principal

Como ε es arbitrario, us < vs. Pero u > v. Esto implica que s = 0.

Plan

- 3 Lema principal
- 4 La integral de la derivada

Proposición (sobre la integral de la derivada de una función creciente)

Sean $a, b \in \mathbb{R}$, a < b, y sea $f : [a, b] \to \mathbb{R}$ una función creciente.

Entonces, f' es medible v

$$\int_a^b f'(x) \, \mathrm{d} x \le f(b) - f(a).$$

Por el teorema, existe f' c.t.p.

Inicio de la demostración.

Por el teorema, existe f' c.t.p. Definimos $g_n \colon [a,b] \to \mathbb{R}$,

Inicio de la demostración.

Por el teorema, existe f' c.t.p. Definimos $g_n: [a, b] \to \mathbb{R}$,

$$g_n(x) := \begin{cases} n\left(f\left(x+\frac{1}{n}\right)-f(x)\right), & x+\frac{1}{n} \in [a,b]; \\ 0, & x+\frac{1}{n} > b. \end{cases}$$

Inicio de la demostración.

Por el teorema, existe f' c.t.p. Definimos $g_n: [a, b] \to \mathbb{R}$,

$$g_n(x) := \begin{cases} n\left(f\left(x+\frac{1}{n}\right)-f(x)\right), & x+\frac{1}{n} \in [a,b]; \\ 0, & x+\frac{1}{n} > b. \end{cases}$$

Lema principal

Entonces $g_n \to f'$ c.t.p., y f' es medible.

$$\int_{a}^{b} f'(x) dx < \liminf_{x \to a} \int_{a}^{b} \sigma_{x}(x) dx$$

$$\int_a^b f'(x) \, \mathrm{d}x \le \liminf_{n \to \infty} \int_a^b g_n(x) \, \mathrm{d}x$$

$$\int_{a}^{b} f'(x) dx \le \liminf_{n \to \infty} \int_{a}^{b} g_{n}(x) dx = \liminf_{n \to \infty} \int_{a}^{b-1/n} g_{n}(x) dx$$

$$\int_{a}^{b} f'(x) dx \le \liminf_{n \to \infty} \int_{a}^{b} g_{n}(x) dx = \liminf_{n \to \infty} \int_{a}^{b-1/n} g_{n}(x) dx$$
$$= \liminf_{n \to \infty} \left(n \int_{a}^{b-1/n} f(x+1/n) dx - n \int_{a}^{b-1/n} f(x) dx \right)$$

$$\int_{a}^{b} f'(x) dx \le \liminf_{n \to \infty} \int_{a}^{b} g_{n}(x) dx = \liminf_{n \to \infty} \int_{a}^{b-1/n} g_{n}(x) dx$$

$$= \liminf_{n \to \infty} \left(n \int_{a}^{b-1/n} f(x+1/n) dx - n \int_{a}^{b-1/n} f(x) dx \right)$$

$$= \liminf_{n \to \infty} \left(n \int_{a+1/n}^{b} f(x) dx - n \int_{a}^{b-1/n} f(x) dx \right)$$

$$\int_{a}^{b} f'(x) dx \le \liminf_{n \to \infty} \int_{a}^{b} g_{n}(x) dx = \liminf_{n \to \infty} \int_{a}^{b-1/n} g_{n}(x) dx$$

$$= \liminf_{n \to \infty} \left(n \int_{a}^{b-1/n} f(x+1/n) dx - n \int_{a}^{b-1/n} f(x) dx \right)$$

$$= \liminf_{n \to \infty} \left(n \int_{a+1/n}^{b} f(x) dx - n \int_{a}^{b-1/n} f(x) dx \right)$$

$$= \liminf_{n \to \infty} \left(n \int_{b-1/n}^{b} f(x) dx - n \int_{a}^{a+1/n} f(x) dx \right)$$

$$\int_{a}^{b} f'(x) dx \leq \liminf_{n \to \infty} \int_{a}^{b} g_{n}(x) dx = \liminf_{n \to \infty} \int_{a}^{b-1/n} g_{n}(x) dx$$

$$= \liminf_{n \to \infty} \left(n \int_{a}^{b-1/n} f(x+1/n) dx - n \int_{a}^{b-1/n} f(x) dx \right)$$

$$= \liminf_{n \to \infty} \left(n \int_{a+1/n}^{b} f(x) dx - n \int_{a}^{b-1/n} f(x) dx \right)$$

$$= \liminf_{n \to \infty} \left(n \int_{b-1/n}^{b} f(x) dx - n \int_{a}^{a+1/n} f(x) dx \right)$$

$$\leq \liminf_{n \to \infty} \left(n \int_{b-1/n}^{b} f(b) dx - n \int_{a}^{a+1/n} f(a) dx \right)$$

$$\int_{a}^{b} f'(x) dx \leq \liminf_{n \to \infty} \int_{a}^{b} g_{n}(x) dx = \liminf_{n \to \infty} \int_{a}^{b-1/n} g_{n}(x) dx$$

$$= \liminf_{n \to \infty} \left(n \int_{a}^{b-1/n} f(x+1/n) dx - n \int_{a}^{b-1/n} f(x) dx \right)$$

$$= \liminf_{n \to \infty} \left(n \int_{a+1/n}^{b} f(x) dx - n \int_{a}^{b-1/n} f(x) dx \right)$$

$$= \liminf_{n \to \infty} \left(n \int_{b-1/n}^{b} f(x) dx - n \int_{a}^{a+1/n} f(x) dx \right)$$

$$\leq \liminf_{n \to \infty} \left(n \int_{b-1/n}^{b} f(b) dx - n \int_{a}^{a+1/n} f(a) dx \right) = f(b) - f(a).$$

Ejemplo que veremos en el futuro: la escalera de Cantor

Existe una función continua y creciente $f:[0,1] \to \mathbb{R}$ tal que

$$f(0) < f(1)$$
 y $f' = 0$ c.t.p.

Existe una función continua y creciente $f:[0,1]
ightarrow \mathbb{R}$ tal que

$$f(0) < f(1)$$
 y $f' = 0$ c.t.p.

Para esta función

$$\int_{[0,1]} f' \, \mathrm{d}\mu = 0 < f(1) - f(0).$$