Criterio de límite en términos de sucesiones (un tema de análisis real)

Egor Maximenko https://www.egormaximenko.com

Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas México

2024-11-21

Objetivo:

demostrar el teorema de Heine, es decir, el criterio de límite en términos de sucesiones.

Objetivo:

demostrar el teorema de Heine, es decir, el criterio de límite en términos de sucesiones.

Prerrequisitos:

espacios métricos, espacios topológicos, base de vecindades.

Objetivo:

demostrar el teorema de Heine, es decir, el criterio de límite en términos de sucesiones.

Prerrequisitos:

espacios métricos, espacios topológicos, base de vecindades.

Una de aplicaciones futuras:

aplicar el teorema de la convergencia dominada a familias de funciones, no necesariamente numerables.

Sea (X, τ) un espacio topológico.

Sea (X, τ) un espacio topológico.

 $\mathsf{Dado}\ \mathit{a}\ \mathsf{en}\ \mathit{X}\mathsf{,}\ \mathsf{pongamos}\ \tau(\mathit{a}) := \{\mathit{V} \in \tau\colon\ \mathit{a} \in \mathit{V}\}.$

Sea (X, τ) un espacio topológico.

Dado a en X, pongamos $\tau(a) := \{V \in \tau : a \in V\}.$

Recordemos la definición del límite.

Sea (X, τ) un espacio topológico.

Dado a en X, pongamos $\tau(a) := \{ V \in \tau : a \in V \}$.

Recordemos la definición del límite.

Sean
$$(X, \tau_X)$$
, (Y, τ_Y) espacios topológicos, $a \in X$, $b \in Y$, $f : X \to Y$.

$$\lim_{x \to a} f(x) = b \qquad \iff \qquad orall Q \in au_Y(b) \qquad \exists V \in au_X(a) \qquad f[V \setminus \{a\}] \subseteq Q.$$

Variaciones de la definición del límite

Definición 1.

Sean (X, τ_X) , (Y, τ_Y) espacios topológicos, $D \subseteq X$, $f: D \to Y$, $a \in cl(D)$, $b \in Y$.

$$\lim_{X \to a} f(X) = b \qquad \iff \qquad orall Q \in au_Y(b) \qquad \exists V \in au_X(a) \qquad f[D \cap (V \setminus \{a\})] \subseteq Q.$$

Variaciones de la definición del límite

Definición 1.

Sean (X, τ_X) , (Y, τ_Y) espacios topológicos, $D \subseteq X$, $f: D \to Y$, $a \in cl(D)$, $b \in Y$.

$$\lim_{X\to a} f(X) = b \qquad \iff \qquad \forall Q \in \tau_Y(b) \qquad \exists V \in \tau_X(a) \qquad f[D \cap (V \setminus \{a\})] \subseteq Q.$$

Definición 2.

En las mismas suposiciones,

$$\lim_{x \to a} f(x) = b \qquad \iff \qquad \forall Q \in \tau_Y(b) \qquad \exists V \in \tau_X(a) \qquad f[D \cap V] \subseteq Q.$$

Variaciones de la definición del límite

Definición 1.

Sean (X, τ_X) , (Y, τ_Y) espacios topológicos, $D \subseteq X$, $f: D \to Y$, $a \in cl(D)$, $b \in Y$.

$$\lim_{\substack{x\to a\\ x\to a}} f(x) = b \qquad \iff \qquad \forall Q \in \tau_Y(b) \qquad \exists V \in \tau_X(a) \qquad f[D \cap (V \setminus \{a\})] \subseteq Q.$$

Definición 2.

En las mismas suposiciones,

$$\lim_{\substack{\mathsf{X}\to\mathsf{a}\\\mathsf{X}}}f(\mathsf{X})=b\qquad\Longleftrightarrow\qquad\forall Q\in\tau_{\mathsf{Y}}(b)\qquad\exists V\in\tau_{\mathsf{X}}(\mathsf{a})\qquad f[D\cap V]\subseteq Q.$$

En general, las Definiciones 1 y 2 no son equivalentes.

Hay casos particulares, cuando son equivalentes: 1) si $a \notin D$; 2) si f(a) = b.

Una base local de una topología en un punto

Sea (X, τ) un espacio topológico y sea $a \in X$.

Una colección \mathcal{W} se llama base local de τ en a, si cumple con dos propiedades:

- $W \subseteq \tau(a)$,
- $\forall V \in \tau(a) \quad \exists W \in \mathcal{W} \quad W \subseteq V.$

Una base local de una topología en un punto

Sea (X, τ) un espacio topológico y sea $a \in X$.

Una colección \mathcal{W} se llama base local de τ en a, si cumple con dos propiedades:

- $W \subseteq \tau(a)$,
- $\forall V \in \tau(a) \quad \exists W \in \mathcal{W} \quad W \subseteq V.$

Ejemplo trivial: $\tau(a)$ es una base local de τ en a.

Una base local de una topología en un punto

Sea (X, τ) un espacio topológico y sea $a \in X$.

Una colección \mathcal{W} se llama base local de τ en a, si cumple con dos propiedades:

- $\mathcal{W} \subseteq \tau(a)$,
- $\forall V \in \tau(a) \quad \exists W \in \mathcal{W} \quad W \subseteq V$.

Ejemplo trivial: $\tau(a)$ es una base local de τ en a.

En vez de una colección, a veces es más cómodo trabajar con una familia.

Una familia $(W_k)_{k\in J}$ se llama base local de τ en a,

si cumple con dos propiedades:

- $\{W_k: k \in J\} \subseteq \tau(a)$,
- $\forall V \in \tau(a) \quad \exists k \in J \quad W_k \subseteq V.$

Criterio de límite en términos de bases de vecindades

Ejercicio.

Sean (X, τ_X) , (Y, τ_Y) espacios topológicos, $f: X \to Y$, $a \in X$, $b \in Y$.

Sea ${\mathcal W}$ una base local de $au_{{\mathcal X}}$ en ${\it a}$, sea ${\mathcal Q}$ una base local de $au_{{\mathcal Y}}$ en ${\it b}$.

Demostrar que

$$\lim_{x\to a} f(x) = b \qquad \iff \qquad \forall Q \in \mathcal{Q} \qquad \exists W \in \mathcal{W} \qquad f[W \setminus \{a\}] \subseteq Q.$$

Bases locales numerables decrecientes

Proposición

Sea (X, τ) un espacio topológico, sea $a \in X$,

y sea $(P_i)_{i\in\mathbb{N}}$ una base local numerable de τ en a.

Para cada k en \mathbb{N} pongamos

$$W_k := \bigcap_{j=1}^k P_j$$
.

Entonces $(W_k)_{k\in\mathbb{N}}$ también es una base local de τ en a, y la sucesión $(W_k)_{k\in\mathbb{N}}$ es decreciente.

Bases locales numerables decrecientes

Proposición

Sea (X, τ) un espacio topológico, sea $a \in X$,

y sea $(P_j)_{j\in\mathbb{N}}$ una base local numerable de τ en a.

Para cada k en \mathbb{N} pongamos

$$W_k := \bigcap_{j=1}^k P_j$$
.

Entonces $(W_k)_{k\in\mathbb{N}}$ también es una base local de τ en a, y la sucesión $(W_k)_{k\in\mathbb{N}}$ es decreciente.

Ejercicio: demostrar la proposición.

Ejemplos de bases locales numerables

Ejercicio.

Sea (X, d) un espacio métrico y sea τ_d la topología inducida por la métrica d.

Para cada a en X y cada r > 0,

$$B(a,r) := \{x \in X : d(x,a) < r\}.$$

Demostrar que la sucesión de bolas

$$(B(a,1/q))_{q\in\mathbb{N}}$$

es una base local de τ_d en a.

Ejemplos de bases locales numerables

Ejercicio.

Recordar la definición de la topología canónica $\tau_{\overline{\mathbb{R}}}$ del eje real extendido $\overline{\mathbb{R}} = [-\infty, +\infty]$. Demostrar que la sucesión de intervalos

$$((m,+\infty])_{m\in\mathbb{N}}$$

es una base local de la topología $au_{\overline{\mathbb{R}}}$ en el punto $+\infty.$

Criterio de límite en términos de sucesiones (criterio de Heine)

Teorema

Sean (X, τ_X) , (Y, τ_Y) espacios topológicos, $f: X \to Y$, $a \in X$, $b \in Y$.

Supongamos que existe una base local numerable de la topología au_X en el punto a.

Entonces, las siguientes dos condiciones son equivalentes:

- (a) $\lim_{x\to a} f(x) = b$;
- (b) para cualquier sucesión $(t_k)_{k\in\mathbb{N}}$ en $X\setminus\{a\}$, si $\lim_{k\to\infty}t_k=a$, entonces $\lim_{k\to\infty}f(t_k)=b$.

Criterio de límite en términos de sucesiones (criterio de Heine)

Teorema

Sean (X, τ_X) , (Y, τ_Y) espacios topológicos, $f: X \to Y$, $a \in X$, $b \in Y$.

Supongamos que existe una base local numerable de la topología au_X en el punto a.

Entonces, las siguientes dos condiciones son equivalentes:

- (a) $\lim_{x\to a} f(x) = b$;
- (b) para cualquier sucesión $(t_k)_{k\in\mathbb{N}}$ en $X\setminus\{a\}$, si $\lim_{k\to\infty}t_k=a$, entonces $\lim_{k\to\infty}f(t_k)=b$.

Heinrich Eduard Heine (1821–1881) fue un matemático alemán.

Criterio de límite en términos de sucesiones (criterio de Heine)

Teorema

Sean (X, τ_X) , (Y, τ_Y) espacios topológicos, $f: X \to Y$, $a \in X$, $b \in Y$.

Supongamos que existe una base local numerable de la topología au_X en el punto a.

Entonces, las siguientes dos condiciones son equivalentes:

- (a) $\lim_{x\to a} f(x) = b$;
- (b) para cualquier sucesión $(t_k)_{k\in\mathbb{N}}$ en $X\setminus\{a\}$, si $\lim_{k\to\infty}t_k=a$, entonces $\lim_{k\to\infty}f(t_k)=b$.

Heinrich Eduard Heine (1821–1881) fue un matemático alemán.

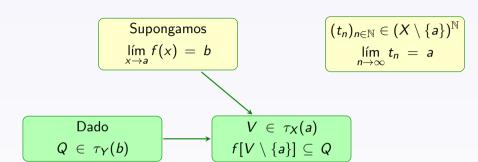
Demostremos las implicaciones (a) \Rightarrow (b) y \neg (a) \Rightarrow \neg (b).

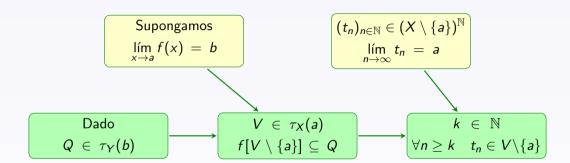
Supongamos
$$\lim_{x \to a} f(x) = b$$

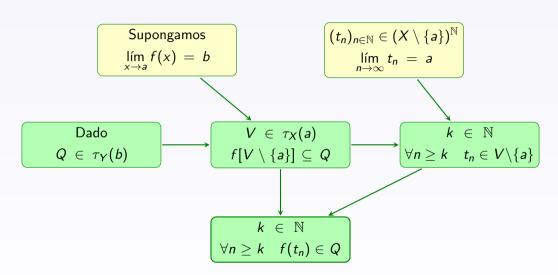
Supongamos
$$\lim_{x \to a} f(x) = b$$

Dado

$$Q \in \tau_Y(b)$$







La condición (a) es equivalente a lo siguiente:

$$\forall Q \in \tau_Y(b)$$
 $\exists V \in \tau_X(a)$ $f[V \setminus \{a\}] \subseteq Q$.

La condición (a) es equivalente a lo siguiente:

$$\forall Q \in \tau_Y(b) \qquad \exists V \in \tau_X(a) \qquad f[V \setminus \{a\}] \subseteq Q.$$

Supongamos que (a) no se cumple:

$$\exists Q \in au_Y(b) \qquad \forall V \in au_X(a) \qquad f[V \setminus \{a\}] \nsubseteq Q.$$

La condición (a) es equivalente a lo siguiente:

$$\forall Q \in \tau_Y(b) \qquad \exists V \in \tau_X(a) \qquad f[V \setminus \{a\}] \subseteq Q.$$

Supongamos que (a) no se cumple:

$$\exists Q \in au_Y(b) \qquad \forall V \in au_X(a) \qquad f[V \setminus \{a\}] \nsubseteq Q.$$

Elegimos E_0 en $\tau_Y(b)$ con esta propiedad. Entonces,

$$\forall V \in \tau(a) \qquad \exists x \in V \setminus \{a\} \qquad f(x) \notin E_0.$$

La condición (a) es equivalente a lo siguiente:

$$\forall Q \in \tau_Y(b) \qquad \exists V \in \tau_X(a) \qquad f[V \setminus \{a\}] \subseteq Q.$$

Supongamos que (a) no se cumple:

$$\exists Q \in \tau_Y(b) \qquad \forall V \in \tau_X(a) \qquad f[V \setminus \{a\}] \nsubseteq Q.$$

Elegimos E_0 en $\tau_Y(b)$ con esta propiedad. Entonces,

$$\forall V \in \tau(a) \qquad \exists x \in V \setminus \{a\} \qquad f(x) \notin E_0.$$

Sea $(W_n)_{n\in\mathbb{N}}$ una base local decreciente de τ_X en a.

La condición (a) es equivalente a lo siguiente:

$$\forall Q \in \tau_Y(b) \qquad \exists V \in \tau_X(a) \qquad f[V \setminus \{a\}] \subseteq Q.$$

Supongamos que (a) no se cumple:

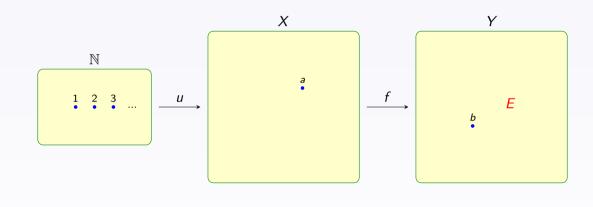
$$\exists Q \in \tau_Y(b) \qquad \forall V \in \tau_X(a) \qquad f[V \setminus \{a\}] \nsubseteq Q.$$

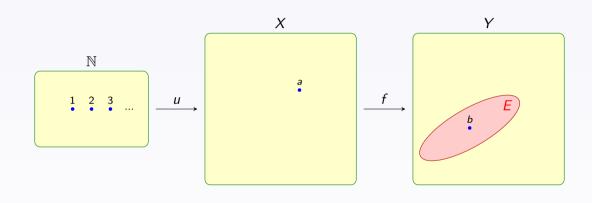
Elegimos E_0 en $\tau_Y(b)$ con esta propiedad. Entonces,

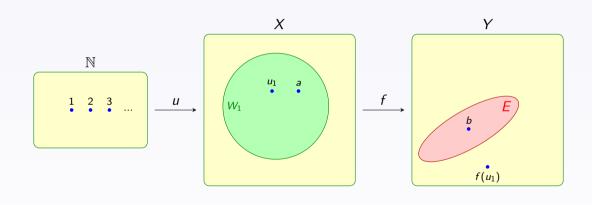
$$\forall V \in \tau(a) \qquad \exists x \in V \setminus \{a\} \qquad f(x) \notin E_0.$$

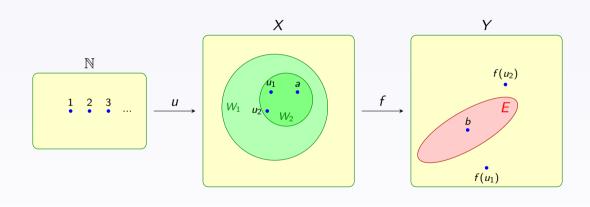
Sea $(W_n)_{n\in\mathbb{N}}$ una base local decreciente de τ_X en a.

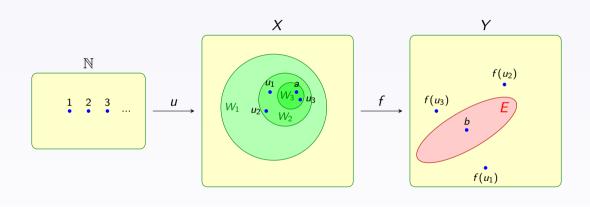
Para cada n en \mathbb{N} encontramos $u_n \in W_n \setminus \{a\}$ tal que $f(u_n) \notin E_0$.











Hemos construido una sucesión $(u_n)_{n\in\mathbb{N}}$ tal que

$$\{ \forall n \in \mathbb{N} \quad t_n \in W_n \setminus \{a\} \}$$

$$\forall n \in \mathbb{N} \qquad f(t_n) \notin E$$

Hemos construido una sucesión $(u_n)_{n\in\mathbb{N}}$ tal que

$$\forall n \in \mathbb{N} \qquad t_n \in W_n \setminus \{a\}$$

$$\forall n \in \mathbb{N} \qquad f(t_n) \notin E$$

Mostremos que $u_n \to a$ cuando $n \to \infty$.

Dado V en $\tau_X(a)$, encontramos k en N tal que $W_k \subseteq V$.

Luego para $n \geq k$ tenemos $u_n \in W_n \subseteq W_k \subseteq V$.

Hemos construido una sucesión $(u_n)_{n\in\mathbb{N}}$ tal que

$$\forall n \in \mathbb{N} \qquad t_n \in W_n \setminus \{a\}$$

$$\forall n \in \mathbb{N} \qquad f(t_n) \notin E$$

Mostremos que $u_n \to a$ cuando $n \to \infty$.

Dado V en $\tau_X(a)$, encontramos k en N tal que $W_k \subseteq V$.

Luego para $n \ge k$ tenemos $u_n \in W_n \subseteq W_k \subseteq V$.

Mostremos que $f(u_n) \not\to b$ cuando $n \to \infty$. En efecto,

$$\exists Q (= E_0) \in \tau_Y(b) \qquad \forall k \in \mathbb{N} \qquad f(u_n) \notin Q.$$

Hemos construido una sucesión $(u_n)_{n\in\mathbb{N}}$ tal que

$$\forall n \in \mathbb{N} \qquad t_n \in W_n \setminus \{a\}$$

$$\forall n \in \mathbb{N} \qquad f(t_n) \notin E$$

Mostremos que $u_n \to a$ cuando $n \to \infty$.

Dado V en $\tau_X(a)$, encontramos k en N tal que $W_k \subseteq V$.

Luego para $n \ge k$ tenemos $u_n \in W_n \subseteq W_k \subseteq V$.

Mostremos que $f(u_n) \not\to b$ cuando $n \to \infty$. En efecto,

$$\exists Q (= E_0) \in \tau_Y(b) \qquad \forall k \in \mathbb{N} \qquad f(u_n) \notin Q.$$

Esto contradice a la suposición (b).

Criterio de continuidad en términos de sucesiones (Heine)

Corolario

Sean (X, τ_X) , (Y, τ_Y) espacios topológicos, $f: X \to Y$, $a \in X$.

Entonces las siguientes dos condiciones son equivalentes:

- (a) f es continua en a;
- (b) para cualquier sucesión $(t_n)_{n\in\mathbb{N}}$ en X, si $\lim_{n\to\infty} t_n = a$, entonces $\lim_{n\to\infty} f(t_k) = f(a)$.

Un truco útil: intercalar dos sucesiones

Eiercicio.

Sea X un espacio topológico y sean $(t_m)_{m\in\mathbb{N}}$, $(u_m)_{m\in\mathbb{N}}$ sucesiones en X. Definimos

$$v_n := \begin{cases} t_m, & n = 2m - 1, \\ u_m, & n = 2m. \end{cases}$$

Demostrar que

$$\lim_{n\to\infty} v_n = a \qquad \iff \qquad \Big(\lim_{m\to\infty} t_m = a \qquad \land \qquad \lim_{m\to\infty} u_m = a\Big).$$

Criterio de existencia del límite en términos de sucesiones

Eiercicio.

Sean (X, τ_X) , (Y, τ_Y) espacios topológicos, $f: X \to Y$, $a \in X$.

Supongamos que existe una base local numerable de au en a.

Supongamos que para cada sucesión $(t_n)_{n\in\mathbb{N}}$ en $X\setminus\{a\}$, si lím $t_n=a$, entonces la sucesión $(f(t_n))_{n\in\mathbb{N}}$ tiene un límite en Y.

Demostrar que existe b en Y tal que $\lim_{x\to a} f(x) = b$.