Convergencia absoluta de integrales impropias (un tema del curso "Análisis real")

Antonio Jimarez Escamilla y Abdiel Rolando Márquez Meza con sugerencias de Egor Maximenko

Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas México

20 de mayo de 2020

Tabla de contenidos

- Objetivos
- 2 Herramientas auxiliares
- Integrales impropias
- 4 Criterio de Cauchy para la convergencia de integrales impropias
- 6 Ejemplos
- 6 Criterios de comparación para integrales impropias de funciones no negativas
- Ejercicios

Objetivos

- Definir el concepto de integral impropia.
- Definir el concepto de convergencia absoluta de una integral impropia.
- Establecer el criterio de Cauchy para convergencia de integrales impropias de funciones complejas.
- Estudiar criterios para la convergencia de integrales impropias para funciones positivas.

Tabla de contenidos

- Objetivos
- 2 Herramientas auxiliares
- 3 Integrales impropias
- 4 Criterio de Cauchy para la convergencia de integrales impropias
- 6 Ejemplos
- 6 Criterios de comparación para integrales impropias de funciones no negativas
- Ejercicios

Criterio de Heine

Teorema

Sean:

- $(X, \tau_X), (Y, \tau_Y)$ espacios topológicos,
- $f: X \to Y$ una función,
- $a \in X$, $b \in Y$.

Suponga además que existe una base local numerable de la topoogía au_X en el punto a.

- a) $\lim_{x\to a} f(x) = b$,
- b) Para cualquier sucesión $(x_n)_{n\in\mathbb{N}}$ en $X\setminus\{a\}$.

$$\lim_{n\to+\infty}x_n=a\implies\lim_{n\to+\infty}f(x_n)=b.$$

Límite de una función creciente en los extremos de un intervalo

Proposición

Sean

- $a, b \in [-\infty, +\infty], a < b$
- ullet $\phi:(a,b) o\mathbb{R}$ una función creciente,
- $V = \phi[(a, b)].$

$$\lim_{\substack{x \to b \\ x \in (a,b)}} \phi(x) = \sup(V) \quad \lim_{\substack{x \to a \\ x \in (a,b)}} \phi(x) = \inf(V).$$

El límite de una función creciente en términos del límite de una sucesión

Proposición

Sean

- $a, b \in [-\infty, +\infty], a < b,$
- ullet $\phi:(a,b)
 ightarrow \mathbb{R}$ una función creciente,
- $(x_n)_{n\in\mathbb{N}}$ una sucesión en (a,b) tal que $\lim_{n\to+\infty}x_n=b$.

$$\lim_{n\to+\infty}\phi(x_n)=\lim_{t\to b^-}\phi(t).$$

Teorema de convergencia monótona

Teorema

Sean

- (X, \mathcal{F}, μ) un espacio de medida,
- $(f_n)_{n\in\mathbb{N}}\in\mathcal{M}(X,\mathcal{F},[0,+\infty))$ una sucesión creciente,
- $g(x) := \lim_{n \to +\infty} f_n(x)$.

- $g \in \mathcal{M}(X, \mathcal{F}, [0, +\infty))$,
- $\bullet \int_X g \ d\mu = \lim_{n \to +\infty} \int_X f_n \ d\mu.$

Teorema de convergencia dominada

Teorema

Sea (X, \mathcal{F}, μ) un espacio de medida. Sea $(f_n)_{n \in \mathbb{N}} \in \mathcal{M}(X, \mathcal{F}, \mathbb{C})$ una sucesión tal que

- i) $(f_n)_{n\in\mathbb{N}}$ converge puntualmente a una función g,
- ii) Existe una función $h \in L^1(X, \mu, \overline{\mathbb{R}}_+)$ tal que $|(f_n)(x)| \leq h(x)$ para todo $x \in X$.

- $(f_n) \in L^1(X, \mu, \mathbb{C})$ para cada $n \in \mathbb{N}$,
- $g \in L^1(X, \mu, \mathbb{C})$,
- $\bullet \lim_{n \to +\infty} \int_{X} |f_n g| d\mu = 0,$
- $\bullet \lim_{n \to +\infty} \int_{\mathbf{Y}} f_n \ d\mu = \int_{\mathbf{Y}} g \ d\mu.$

Criterio de Cauchy para la existencia del límite de una función

Proposición

Sean:

- (X, τ) un espacio topologico,
- \bullet $M \subset X$,
- $a \in X$ un punto de acumulación de M,
- $\phi: M \to \mathbb{C}$ una función.

Suponga además que existe una base local numerable de au en a.

- a) $\lim_{x \to a} \phi(x) = b$
- b) $\forall \varepsilon > 0 \ \exists V \in \tau(a) \ \text{tal que} \ \forall x, y \in V \ d(\phi(x), \phi(y)) < \varepsilon$

Tabla de contenidos

- Objetivos
- 2 Herramientas auxiliares
- Integrales impropias
- 4 Criterio de Cauchy para la convergencia de integrales impropias
- 6 Ejemplos
- 6 Criterios de comparación para integrales impropias de funciones no negativas
- Ejercicios

Definiciones

Definición

Sea $f \in \mathcal{M}((a, b), \mathcal{F}, \mathbb{C})$, donde $a, b \in \overline{\mathbb{R}}$, con a < b.

Suponga que $\forall v \in (a, b)$ $f \in L^1((a, v), \mathcal{F}, \mathbb{C})$. Entonces definimos

$$\int_{a}^{b} f := \lim_{\substack{v \to b \\ v \in (a,b)}} \int_{a}^{v} f \quad y \quad \int_{a}^{b} f := \lim_{\substack{v \to a \\ v \in (a,b)}} \int_{v}^{b} f.$$

Si estos existen y son finitos se dice que las integrales impropias $\int_a^{\to b} f$ y $\int_{\to a}^b f$ convergen.

Lema

Sea $f \in \mathcal{M}((a, b), \mathcal{F}, \mathbb{C})$, donde $a, b \in \overline{\mathbb{R}}$, con a < b.

- Suponga que $\forall u, v \in (a, b)$ $f \in L^1([u, v], \mathcal{F}, \mathbb{C})$,
- Sean $c_1, c_2 \in (a, b)$.

1)
$$\int_{-a}^{c_1} f$$
 converge $\Leftrightarrow \int_{-a}^{c_2} f$ converge.

II)
$$\int_{C_1}^{\to b} f$$
 converge $\Leftrightarrow \int_{C_2}^{\to b} f$ converge.

Lema

Sea $f \in \mathcal{M}((a, b), \mathcal{F}, \mathbb{C})$, donde $a, b \in \overline{\mathbb{R}}$, con a < b.

- Suponga que $\forall u, v \in (a, b)$ $f \in L^1([u, v], \mathcal{F}, \mathbb{C})$
- Sean $c_1, c_2 \in (a, b)$.

Entonces:

- 1) $\int_{-\infty}^{c_1} f$ converge $\Leftrightarrow \int_{-\infty}^{c_2} f$ converge.
- II) $\int_{C_1}^{b} f$ converge $\Leftrightarrow \int_{C_2}^{b} f$ converge.

Basta notar que

$$\int_{0}^{c_1} f + \int_{0}^{c_2} f = \int_{0}^{c_2} f$$

Lema

Sea $f \in \mathcal{M}((a, b), \mathcal{F}, \mathbb{C})$, donde $a, b \in \overline{\mathbb{R}}$, con a < b.

- Suponga que $\forall u, v \in (a, b)$ $f \in L^1([u, v], \mathcal{F}, \mathbb{C})$
- Sean $c_1, c_2 \in (a, b)$.

Entonces:

1)
$$\int_{-a}^{c_1} f$$
 converge $\Leftrightarrow \int_{-a}^{c_2} f$ converge.

II)
$$\int_{C_1}^{\to b} f$$
 converge $\Leftrightarrow \int_{C_2}^{\to b} f$ converge.

Basta notar que

$$\int_{u}^{c_1} f + \int_{c_1}^{c_2} f = \int_{u}^{c_2} f \implies \int_{c_1}^{c_1} f + \int_{c_1}^{c_2} f = \int_{c_1}^{c_2} f.$$

Definición

Sea $f \in \mathcal{M}((a,b), \mathcal{F}, \mathbb{C})$, donde $a, b \in \overline{\mathbb{R}}$, con a < b.

- Suponga que $\forall u,v\in (a,b)\quad f\in L^1([u,v],\mathcal{F},\mathbb{C})$,
- $\exists c \in (a, b)$ tal que $\int_{c}^{b} f y \int_{c}^{c} f$ convergen.

Entonces definimos

$$\int_{a}^{b} f := \int_{a}^{c} f + \int_{a}^{b} f.$$

Definición

Sea $f \in \mathcal{M}((a,b), \mathcal{F}, \mathbb{C})$, donde $a, b \in \overline{\mathbb{R}}$, con a < b.

- Suponga que $\forall u, v \in (a, b)$ $f \in L^1([u, v], \mathcal{F}, \mathbb{C})$,
- $\exists c \in (a, b)$ tal que $\int_{c}^{b} f y \int_{c}^{c} f$ convergen.

Entonces definimos

$$\int_{-\infty}^{\infty} f := \int_{-\infty}^{c} f + \int_{-\infty}^{\infty} f.$$

Por el lema anterior la definición de $\int_{-\infty}^{\infty} f$ no depende de la elección del punto $c \in (a, b)$.

Tabla de contenidos

- Objetivos
- 2 Herramientas auxiliares
- Integrales impropias
- 4 Criterio de Cauchy para la convergencia de integrales impropias
- 6 Ejemplos
- 6 Criterios de comparación para integrales impropias de funciones no negativas
- Ejercicios

Caso particular del criterio de Cauchy para la existencia del límite de una función

Proposición

Sea $\phi: (a, b) \subset \overline{\mathbb{R}} \longmapsto \mathbb{C}$, con a < b.

- a) $\lim_{x \to b} \phi(x) = M$,
- b) $\forall \epsilon > 0 \quad \exists v \in (a, b) \quad \forall x, y \in (v, b) \quad |\phi(x) \phi(y)| < \epsilon.$

Criterio de Cauchy para la convergencia de integrales impropias

Proposición

- Sea $f \in \mathcal{M}((a, b), \mathcal{F}, \mathbb{C})$, donde $a, b \in \overline{\mathbb{R}}$, con a < b.
- Suponga que $\forall v \in (a, b) \quad f \in L^1((a, v), \mathcal{F}, \mathbb{C}).$

- a) $\int_{a}^{b} f$ converge,
- b) $\lim_{\substack{x_1, x_2 \to b \\ x_1, x_2 \in (a,b)}} \int_{x_1}^{x_2} f = 0.$

Criterio de Cauchy para la convergencia de integrales impropias

Proposición

- Sea $f \in \mathcal{M}((a, b), \mathcal{F}, \mathbb{C})$, donde $a, b \in \overline{\mathbb{R}}$, con a < b.
- Suponga que $\forall v \in (a, b) \quad f \in L^1((a, v), \mathcal{F}, \mathbb{C}).$

- a) $\int_{a}^{b} f$ converge,
- b) $\lim_{\substack{x_1, x_2 \to b \\ x_1, x_2 \in (a, b)}} \int_{x_1}^{x_2} f = 0.$

Criterio de Cauchy para la convergencia de integrales impropias

Proposición

- Sea $f \in \mathcal{M}((a,b), \mathcal{F}, \mathbb{C})$, donde $a,b \in \overline{\mathbb{R}}$, con a < b.
- Suponga que $\forall v \in (a, b) \mid f \in L^1((a, v), \mathcal{F}, \mathbb{C})$.
- Definimos $\phi:(a,b) \longrightarrow \mathbb{C}$ como $\phi(x):=\int_{-\infty}^{x}f$.

Entonces las siguientes condiciones son equivalentes:

- a) $\lim_{x \to b} \phi(x)$ existe y es finito,
- b) $\forall \epsilon > 0 \quad \exists v \in (a, b) \quad \forall x_1, x_2 \in (v, b) \quad |\phi(x_2) \phi(x_1)| < \epsilon.$

Demostración

Basta aplicar el Criterio de Cauchy para la existencia del límite de una función a ϕ .

Suponga que $\forall v \in (a, b)$ $f \in L^1((a, v), \mu, \mathbb{C})$.

Demuestre que:

$$\int_{a}^{b} |f| \text{ converge } \implies \int_{a}^{b} f \text{ converge.}$$

Sugerencia: Aplicar el criterio de Cauchy para la convergencia a ambas integrales impropias y la siguiente propiedad

$$\left| \int_{x_1}^{x_2} f \right| \le \int_{x_1}^{x_2} |f|.$$

Convergencia absoluta de una integral impropia

Definición

Sea $f \in \mathcal{M}((a,b),\mathcal{F},\mathbb{C})$, donde $a,b \in \overline{\mathbb{R}}$, con a < b.

- Suponga que $\forall v \in (a, b) \mid f \in L^1((a, v), \mathcal{F}, \mathbb{C})$,
- $\int_{-\infty}^{\infty} |f|$ converge.

Entonces se dice que $\int_{2}^{b} f$ es absolutamente convergente.

Proposición

Sea $f \in \mathcal{M}((a, b), \mathcal{F}, [0, +\infty))$. Suponga que $\forall v \in (a, b) \quad f \in L^1((a, v), \mathcal{F}, [0, +\infty))$.

$$\int_{a}^{b} f = \int_{a}^{b} f.$$

Demostración

Consideremos la función
$$\phi(x) = \int_{-\infty}^{x} f$$
.

Sea
$$\{x_n\}_{n\in\mathbb{N}}\subset (a,b)$$
 creciente tal que $\lim_{n\to+\infty}x_n=b$. Entonces:

Demostración

Consideremos la función
$$\phi(x) = \hat{\int} f$$
.

Sea
$$\{x_n\}_{n\in\mathbb{N}}\subset (a,b)$$
 creciente tal que $\lim_{n\to+\infty}x_n=b$. Entonces:

 \bullet ϕ es creciente,

Demostración

Consideremos la función
$$\phi(x) = \hat{\int} f$$
.

Sea $\{x_n\}_{n\in\mathbb{N}}\subset (a,b)$ creciente tal que $\lim_{n\to+\infty}x_n=b$. Entonces:

- \bullet ϕ es creciente,
- $f \mathbb{1}_{(a,x_n)} \nearrow f$.

Demostración

Consideremos la función
$$\phi(x) = \int_{a}^{x} f$$
.

Sea $\{x_n\}_{n\in\mathbb{N}}\subset (a,b)$ creciente tal que $\lim_{n\to+\infty}x_n=b$. Entonces:

- \bullet ϕ es creciente,
- $f \mathbb{1}_{(a,x_n)} \nearrow f$.

Luego se cumple que

Demostración

Consideremos la función
$$\phi(x) = \int_{a}^{x} f$$
.

Sea $\{x_n\}_{n\in\mathbb{N}}\subset (a,b)$ creciente tal que $\lim_{n\to+\infty}x_n=b$. Entonces:

- ϕ es creciente,
- $f \mathbb{1}_{(a,x_n)} \nearrow f$.

Luego se cumple que

$$\int_{a}^{b} f = \lim_{n \to +\infty} \int_{a}^{x_{n}} f$$

Teorema de la convergencia monótona

Demostración

Consideremos la función
$$\phi(x) = \int_{a}^{x} f$$
.

Sea $\{x_n\}_{n\in\mathbb{N}}\subset (a,b)$ creciente tal que $\lim_{n\to\infty}x_n=b$. Entonces:

- ϕ es creciente,
- $f \mathbb{1}_{(a,x_n)} \nearrow f$.

Luego se cumple que

$$\lim_{n \to +\infty} \int_{a}^{x_n} f = \lim_{x_n \to b} \phi(x_n)$$

Definición de ϕ

Demostración

Consideremos la función
$$\phi(x) = \int_{a}^{x} f$$
.

Sea $\{x_n\}_{n\in\mathbb{N}}\subset (a,b)$ creciente tal que $\lim_{n\to+\infty}x_n=b$. Entonces:

- ϕ es creciente.
- $f \mathbb{1}_{(a,x_n)} \nearrow f$.

Luego se cumple que

$$\lim_{x_n \to b} \phi(x_n) = \lim_{v \to b} \phi(v)$$

Límite de funciones crecientes en términos de sucesiones

Demostración

Consideremos la función
$$\phi(x) = \int_{-\infty}^{\infty} f$$
.

Sea $\{x_n\}_{n\in\mathbb{N}}\subset (a,b)$ creciente tal que $\lim_{n\to+\infty}x_n=b$. Entonces:

- ϕ es creciente,
- $f \mathbb{1}_{(a,x_n)} \nearrow f$.

Luego se cumple que

$$\lim_{v \to b} \phi(v) = \lim_{v \to b} \int_{a}^{v} f$$

Definición de ϕ

Demostración

Consideremos la función
$$\phi(x) = \int_{a}^{x} f$$
.

Sea $\{x_n\}_{n\in\mathbb{N}}\subset (a,b)$ creciente tal que $\lim_{n\to+\infty}x_n=b$. Entonces:

- ϕ es creciente,
- $f \mathbb{1}_{(a,x_n)} \nearrow f$.

Luego se cumple que

$$\lim_{v \to b} \int_{a}^{v} f = \int_{a}^{\to b} f.$$

Definición de integral impropia

Demostración

Consideremos la función
$$\phi(x) = \hat{\int} f$$
.

Sea $\{x_n\}_{n\in\mathbb{N}}\subset (a,b)$ creciente tal que $\lim_{n\to +\infty}x_n=b$. Entonces:

- ϕ es creciente,
- $f \mathbb{1}_{(a,x_n)} \nearrow f$.

Luego se cumple que

$$\int_{a}^{b} f = \int_{a}^{\to b} f.$$

Corolario

Sea $f \in \mathcal{M}((a,b),\mathcal{F},[0,+\infty)).$

$$\int\limits_{-\infty}^{\infty}f \quad \text{converge} \Leftrightarrow f \in L^1((a,b),\mathcal{F},[0,+\infty)).$$

Convergencia absoluta e integral de Lebesgue para funciones complejas

Proposición

Sea $f \in \mathcal{M}((a,b),\mathcal{F},\mathbb{C})$.

Suponga que: $\forall v \in (a, b) \quad f \in L^1((a, v), \mathcal{F}, \mathbb{C}).$

Entonces

$$\int_{a}^{b} f = \int_{a}^{b} f.$$

Sugerencia

Aplicar teorema de convergencia dominada y el criterio de Heine.

Tabla de contenidos

- Objetivos
- Perramientas auxiliares
- Integrales impropias
- 4 Criterio de Cauchy para la convergencia de integrales impropias
- 5 Ejemplos
- 6 Criterios de comparación para integrales impropias de funciones no negativas
- Ejercicios

$$\int_1^{+\infty} \frac{dx}{x^p} < \infty \iff p > 1.$$

$$\int_1^{+\infty} \frac{dx}{x^p} < \infty \iff p > 1.$$

Demostración.

$$\Longrightarrow$$
) Supongamos que $p \leq 1$.

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} < \infty \iff p > 1.$$

Demostración.

$$\Longrightarrow$$
) Supongamos que $p \le 1$.

•
$$p=1$$
: $\int_1^{+\infty} \frac{dx}{x^p} = \lim_{v \to +\infty} \int_1^v \frac{dx}{x} = \lim_{v \to +\infty} \ln(v) = +\infty$.

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} < \infty \iff p > 1.$$

Demostración.

 \implies) Supongamos que p < 1.

•
$$p=1$$
: $\int_1^{+\infty} \frac{dx}{x^p} = \lim_{v \to +\infty} \int_1^v \frac{dx}{x} = \lim_{v \to +\infty} \ln(v) = +\infty$.

•
$$p < 1$$
: $\int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{v \to +\infty} \int_{1}^{v} \frac{dx}{x^{p}} = \lim_{v \to +\infty} \frac{v^{1-p} - 1}{1-p} = \lim_{v \to +\infty} \frac{v^{1-p}}{1-p} - \frac{1}{1-p} = +\infty$.

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} < \infty \iff p > 1.$$

Demostración.

 \implies) Supongamos que p < 1.

•
$$p=1$$
:
$$\int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{v \to +\infty} \int_{1}^{v} \frac{dx}{x} = \lim_{v \to +\infty} \ln(v) = +\infty.$$

•
$$p < 1$$
: $\int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{v \to +\infty} \int_{1}^{v} \frac{dx}{x^{p}} = \lim_{v \to +\infty} \frac{v^{1-p} - 1}{1 - p} = \lim_{v \to +\infty} \frac{v^{1-p}}{1 - p} - \frac{1}{1 - p} = +\infty$.

$$\iff$$
) Suponga que $p > 1$.

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} < \infty \iff p > 1.$$

Demostración.

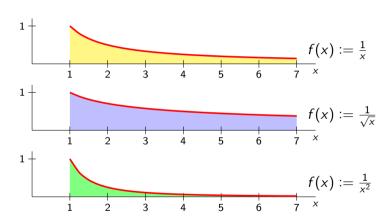
 \Longrightarrow) Supongamos que p < 1.

•
$$p = 1$$
:
$$\int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{v \to +\infty} \int_{1}^{v} \frac{dx}{x} = \lim_{v \to +\infty} \ln(v) = +\infty.$$

•
$$p < 1$$
: $\int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{v \to +\infty} \int_{1}^{v} \frac{dx}{x^{p}} = \lim_{v \to +\infty} \frac{v^{1-p} - 1}{1-p} = \lim_{v \to +\infty} \frac{v^{1-p}}{1-p} - \frac{1}{1-p} = +\infty$.

 \iff) Suponga que p > 1.

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{v \to \infty} \frac{v^{1-p}}{1-p} - \frac{1}{1-p} = -\frac{1}{1-p} < +\infty.$$



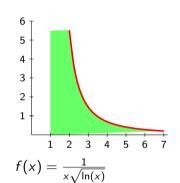
$$\int_0^1 \frac{dx}{x^p} < \infty \iff p < 1.$$

Ejercicio

$$\int_1^{+\infty} \frac{dx}{x \, \ln(x)^q} < \infty \iff q > 1.$$

Sugerencia: Tomar u = ln(x).

 $f(x) = \frac{1}{x \ln(x)}$



 $f(x) = \frac{1}{x \ln(x)^2}$

Eiercicio

Sea a > 0. Calcular $\int_{0}^{+\infty} e^{-ax} dx$.

Ejercicio

Sea a > 0. Calcular $\int_{-\infty}^{+\infty} \frac{dx}{a^2 + x^2}$

Sugerencia:
$$\int_{-\infty}^{\infty} \frac{dx}{a^2 + x^2} = \int_{0}^{\infty} \frac{dx}{a^2 + x^2} + \int_{-\infty}^{0} \frac{dx}{a^2 + x^2}$$

Ejemplo

Sean a>0 y $b\in\mathbb{R}\backslash\{0\}$. Mostraremos que

$$\int_{0}^{+\infty} e^{-ax} \cos(bx) dx = \frac{a}{a^2 + b^2} \quad \text{y} \quad \int_{0}^{+\infty} e^{-ax} \sin(bx) dx = \frac{b}{a^2 + b^2}.$$

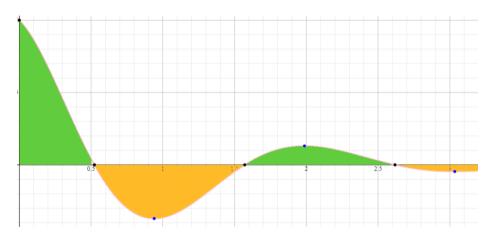


Figura: $f(x) = e^{-x} \cos(3x)$

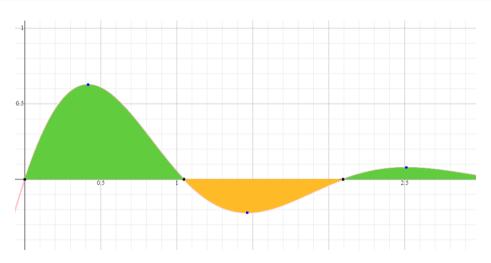


Figura: $f(x) = e^{-x} \sin(3x)$

Solución al ejemplo.

Primero notemos que podemos reescribir las dos integrales anteriores como

$$\int_{0}^{+\infty} \Re\left(e^{(-a+bi)x}\right) dx \quad \text{y} \quad \int_{0}^{+\infty} \Im\left(e^{(-a+bi)x}\right) dx.$$

Solución al ejemplo.

Primero notemos que podemos reescribir las dos integrales anteriores como

$$\int_{0}^{+\infty} \Re\left(e^{(-a+bi)x}\right) dx \quad \text{y} \quad \int_{0}^{+\infty} \Im\left(e^{(-a+bi)x}\right) dx.$$

Es decir

$$\Re\left(\int\limits_0^{+\infty}e^{(-a+bi)x}dx\right)\quad\text{y}\quad\Im\left(\int\limits_0^{+\infty}e^{(-a+bi)x}dx\right).$$

Solución al ejemplo.

Primero notemos que podemos reescribir las dos integrales anteriores como

$$\int_{0}^{+\infty} \Re\left(e^{(-a+bi)x}\right) dx \quad \text{y} \quad \int_{0}^{+\infty} \Im\left(e^{(-a+bi)x}\right) dx.$$

Es decir

$$\Re\left(\int\limits_0^{+\infty}e^{(-a+bi)x}dx\right)\quad\text{y}\quad\Im\left(\int\limits_0^{+\infty}e^{(-a+bi)x}dx\right).$$

Así que basta con calcular $\int_{a}^{+\infty} e^{(-a+bi)x} dx$.

$$\int_{0}^{+\infty} e^{(-a+bi)x} dx = \lim_{\beta \to \infty} \left(\frac{1}{-a+bi} e^{(-a+bi)x} \Big|_{0}^{\beta} \right)$$

$$\int_{0}^{+\infty} e^{(-a+bi)x} dx = \lim_{\beta \to \infty} \left(\frac{1}{-a+bi} e^{(-a+bi)x} \Big|_{0}^{\beta} \right)$$
$$= \lim_{\beta \to \infty} \left(-\frac{a+bi}{a^2+b^2} e^{(-a+bi)x} \Big|_{0}^{\beta} \right)$$

$$= \lim_{\beta \to \infty} \left(-\frac{a+bi}{a^2+b^2} e^{(-a+bi)x} \Big|_{0}^{\beta} \right)$$

$$= \lim_{\beta \to \infty} \left(-\frac{a+bi}{a^2+b^2} e^{-a\beta} e^{b\beta i} \right) + \frac{a+bi}{a^2+b^2}$$

$$= \lim_{\beta \to \infty} \left(-\frac{a+bi}{a^2+b^2} e^{-a\beta} e^{b\beta i} \right) + \frac{a+bi}{a^2+b^2}$$

Tabla de contenidos

- Objetivos
- 2 Herramientas auxiliares
- Integrales impropias
- 4 Criterio de Cauchy para la convergencia de integrales impropias
- 6 Ejemplos
- 6 Criterios de comparación para integrales impropias de funciones no negativas
- Ejercicios

De la convergencia de integrales impropias para funciones no negativas

Proposición

Sean $f, g \in \mathcal{M}((a, b), \mathcal{F}, [0, +\infty)$. Suponga que:

•
$$\forall v \in (a,b)$$
 $f,g \in L^1((a,v),\mathcal{F},[0,+\infty)),$

•
$$\forall x \in (a, b) \quad 0 \le f(x) \le g(x)$$
.

Entonces

$$\int_{a}^{b} g \quad \text{converge} \implies \int_{a}^{b} f \quad \text{converge.}$$

De la convergencia de integrales impropias para funciones no negativas

Proposición

Sean $f, g \in \mathcal{M}((a, b), \mathcal{F}, [0, +\infty)$. Suponga que:

•
$$\forall v \in (a, b)$$
 $f, g \in L^1((a, v), \mathcal{F}, [0, +\infty)),$

•
$$\forall x \in (a, b) \quad 0 \le f(x) \le g(x)$$
.

Entonces

$$\int\limits_{-}^{+}g \quad \text{converge} \implies \int\limits_{-}^{+}f \quad \text{converge}.$$

Demostración

Basta recordar que:

$$0 \le \int\limits_{-b}^{b} f \le \int\limits_{-a}^{b} g.$$

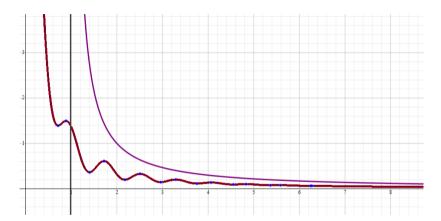


Figura: Condiciones iniciales

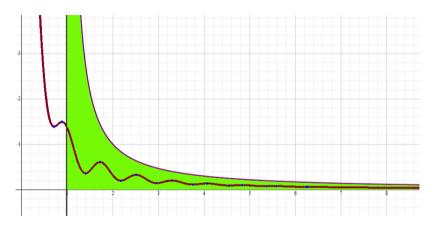


Figura: $\int_{a}^{b} g$ finita

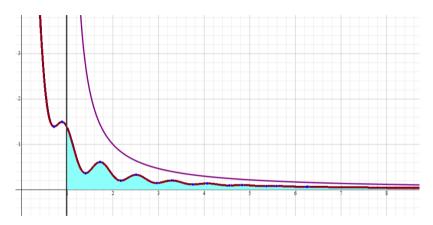


Figura: $\int_{a}^{b} f$ finita

Convergencia de integrales impropias para funciones no negativas

Corolario

Sean $f, g \in \mathcal{M}((a, b), \mathcal{F}, [0, +\infty)$. Suponga que:

Entonces

$$\int\limits_{-\infty}^{\infty} f \quad \text{no converge} \implies \int\limits_{-\infty}^{\infty} g \quad \text{no converge}.$$

Propiedades de convergencia para funciones no negativas

Lema

Sea $f \in \mathcal{M}((a,b), \mathcal{F}, [0,+\infty).$

- Suponga que $\forall v \in (a, b)$ $f, g \in L^1((a, v), \mathcal{F}, [0, +\infty)).$
- Sea c > 0.

Entonces

$$\int_{a}^{b} f \quad \text{converge} \Leftrightarrow \quad \int_{a}^{b} cf \quad \text{converge.}$$

Propiedades de convergencia para funciones no negativas

Lema

Sea $f \in \mathcal{M}((a, b), \mathcal{F}, [0, +\infty).$

- Suponga que $\forall v \in (a, b)$ $f, g \in L^1((a, v), \mathcal{F}, [0, +\infty)).$
- Sea c > 0.

Entonces

$$\int_{a}^{b} f \quad \text{converge} \Leftrightarrow \int_{a}^{b} cf \quad \text{converge.}$$

Basta recordar que:

$$\int_{a}^{b} cf = c \int_{a}^{b} f.$$

Proposición

Sea $f, g \in \mathcal{M}((a, b), \mathcal{F}, [0, +\infty)$. Suponga que:

- $\forall v \in (a,b)$ $f,g \in L^1((a,v),\mathcal{F},[0.+\infty)),$
- $\bullet \lim_{x \to b} \frac{f(x)}{g(x)} = 1$

Entonces

$$\int\limits_{-}^{+}g \quad \text{converge} \Leftrightarrow \quad \int\limits_{-}^{+}f \quad \text{converge}.$$

Demostración Por hipótesis $\lim_{x\to b} \frac{f(x)}{g(x)} = 1$.

Demostración

Por hipótesis $\lim_{x\to b} \frac{f(x)}{g(x)} = 1$.

Entonces para $\epsilon = \frac{1}{2}$ se tiene que:

Demostración

Por hipótesis $\lim_{x\to b} \frac{f(x)}{g(x)} = 1$.

Entonces para $\epsilon = \frac{1}{2}$ se tiene que:

$$\exists v \in (a,b) \qquad \forall x \in (v,b) \quad \left| \frac{f(x)}{g(x)} - 1 \right| < \frac{1}{2}.$$

Criterio de comparación del límite

Demostración

Por hipótesis $\lim_{x\to b} \frac{f(x)}{g(x)} = 1$.

Entonces para $\epsilon = \frac{1}{2}$ se tiene que:

$$\exists v \in (a,b) \qquad \forall x \in (v,b) \quad \left| \frac{f(x)}{g(x)} - 1 \right| < \frac{1}{2}.$$

Esto es:

$$\frac{1}{2}g(x) < f(x) < \frac{3}{2}g(x) \quad \forall x \in (v, b).$$

Criterio de comparación del límite

Demostración

Por hipótesis $\lim_{x\to b} \frac{f(x)}{g(x)} = 1$.

Entonces para $\epsilon = \frac{1}{2}$ se tiene que:

$$\exists v \in (a,b) \qquad \forall x \in (v,b) \quad \left| \frac{f(x)}{g(x)} - 1 \right| < \frac{1}{2}.$$

Esto es:

$$\frac{1}{2}g(x) < f(x) < \frac{3}{2}g(x) \quad \forall x \in (v, b).$$

Basta notar que:

$$0 \le f \mathbb{1}_{(a,v)} + \frac{1}{2}g \mathbb{1}_{(v,b)} < f < f \mathbb{1}_{(a,v)} + \frac{3}{2}g \mathbb{1}_{(v,b)}$$

Tabla de contenidos

- Objetivos
- 2 Herramientas auxiliares
- Integrales impropias
- 4 Criterio de Cauchy para la convergencia de integrales impropias
- 5 Ejemplos
- 6 Criterios de comparación para integrales impropias de funciones no negativas
- Ejercicios

Ejemplo

Investigar la convergencia de $\int_{0}^{\to 4} \frac{dx}{(4-x)^{\frac{2}{3}}}.$

a de
$$\int_{0}^{34} \frac{dx}{(4-x)^{\frac{2}{3}}}$$
.

Ejemplo

Investigar la convergencia de $\int_{0}^{4} \frac{dx}{(4-x)^{\frac{2}{3}}}.$

Sugerencias: Investigue la convergencia de
$$\int_{0}^{\infty} \frac{dx}{4-x}$$
 y el $\lim_{x\to 4} (4-x)^{\frac{1}{3}}$.

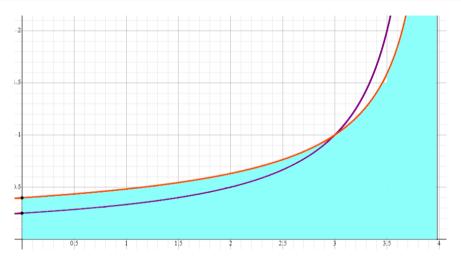


Figura: Gráfica de $f(x) = \frac{1}{(4-x)^{\frac{2}{3}}}$

Ejemplo

Investigar la convergencia de $\int_{3}^{++\infty} \frac{x^2 dx}{e^x}.$

$$\int_{0}^{\infty} \frac{x^2}{x^2}$$

Ejemplo

Investigar la convergencia de $\int_{3}^{++\infty} \frac{x^2 dx}{e^x}.$

Sugerencia: Busque una función
$$g(x)$$
 con la cual pueda comparar $f(x) = \frac{x^2}{e^x}$.

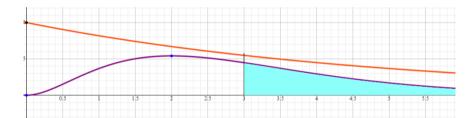


Figura: Gráfica de $f(x) = \frac{x^2 dx}{e^x}$

Ejemplo

Investigar la convergencia de $\int_{-\infty}^{\infty} \frac{dx}{\sqrt{2x-x^2}}.$

Ejemplo

Investigar la convergencia de $\int_{0}^{\infty} \frac{dx}{\sqrt{2x-x^2}}.$

Sugerencia: Basta investigar la convergencia de
$$\int_{1}^{\pi/2} \frac{dx}{\sqrt{2x-x^2}}$$
.

Figura: Gráfica de $f(x) = \frac{1}{\sqrt{2x-x^2}}$