El eje real extendido

Egor Maximenko http://www.egormaximenko.com

Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas México

25 de febrero de 2021

Objetivo:

conocer el concepto del eje real extendido $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$, definir el orden y la topología en este conjunto.

Prerrequisitos:

relaciones binarios, orden, orden lineal (orden total), topología.

Aplicaciones:

simplificar el trabajo con inf y sup,

definir el valor de cualquier serie de números positivos.

Definición de $\overline{\mathbb{R}}$

 $+\infty$ y $-\infty$ son simplemente dos símbolos.

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty, -\infty\}.$$

En el conjunto $\mathbb R$ ya está definido el orden común <.

Lo extendemos al conjunto $\overline{\mathbb{R}}$ mediante las siguientes reglas:

$$-\infty < a \quad \forall x \in \mathbb{R}, \qquad a < +\infty \quad \forall x \in \mathbb{R}, \qquad -\infty < +\infty.$$

Luego definimos la relación binaria \leq en $\overline{\mathbb{R}}$:

$$a \le b \qquad \Longleftrightarrow \qquad a < b \quad \lor \quad a = b.$$

Definición más formal del orden en $\overline{\mathbb{R}}$

Recordemos que una relación binaria es un conjunto de pares ordenados.

$$<_{\mathbb{R}} = \{(x,y) \in \mathbb{R}^2 \colon x < y\}.$$

Definición formal de la relación < en $\overline{\mathbb{R}}$:

$$<_{\overline{\mathbb{R}}} := <_{\mathbb{R}} \cup \{(-\infty, a): a \in \mathbb{R}\} \cup \{(a, +\infty): a \in \mathbb{R}\} \cup \{(-\infty, +\infty)\}.$$

$\overline{\mathbb{R}}$ es un conjunto linealmente ordenado (=totalmente ordenado)

Se cumplen las siguientes propiedades.

La propiedad transitiva.

Para todos $a, b, c \in \overline{\mathbb{R}}$,

si
$$a < b$$
 y $b < c$, entonces $a < c$.

La ley de tricotomía.

Para todos $a,b\in\overline{\mathbb{R}}$, se cumple una y sólo una de las siguientes tres condiciones:

$$a < b$$
, $a = b$, $b < a$.

$\overline{\mathbb{R}}$ es un conjunto linealmente ordenado (=totalmente ordenado)

Se cumplen las siguientes propiedades.

La propiedad transitiva. Para todos $a, b, c \in \overline{\mathbb{R}}$,

si
$$a < b$$
 y $b < c$, entonces $a < c$.

La ley de tricotomía.

Para todos $a,b\in\overline{\mathbb{R}}$, se cumple una y sólo una de las siguientes tres condiciones:

$$a < b$$
, $a = b$, $b < a$.

Demostración: ejercicio.

Notación para los invervalos

Para cualesquiera $a,b\in\overline{\mathbb{R}}$ se pone

$$]a, b[= (a, b) := \{x \in \overline{\mathbb{R}} : a < x < b\},$$

$$[a, b[= [a, b) := \{x \in \overline{\mathbb{R}} : a \le x < b\},$$

$$[a, b] = (a, b] := \{x \in \overline{\mathbb{R}} : a < x \le b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \le x \le b\}.$$

Notación para los invervalos

Para cualesquiera $a,b\in\overline{\mathbb{R}}$ se pone

$$[a,b[= (a,b) := \{x \in \overline{\mathbb{R}} : a < x < b\},$$

$$[a,b[= [a,b) := \{x \in \overline{\mathbb{R}} : a \le x < b\},$$

$$[a,b] = (a,b] := \{x \in \overline{\mathbb{R}} : a < x \le b\},$$

$$[a,b] := \{x \in \overline{\mathbb{R}} : a \le x \le b\}.$$

Por ejemplo,

$$[3,-4] = \emptyset, \qquad [7,7] = \{7\}, \qquad]7,7[= \emptyset.$$

Los intervalos abiertos en $\overline{\mathbb{R}}$

$$\mathcal{J} := \{]a, b[: a, b \in \mathbb{R} \} \cup \{]a, +\infty] : a \in \mathbb{R} \} \cup \{ [-\infty, b[: b \in \mathbb{R} \}.$$

Lema

El conjunto ${\mathcal J}$ es cerrado bajo la operación $\cap.$

\cap]c, d[$]c,+\infty]$	$[-\infty,d[$
]a, b[
$]a,+\infty]$			
$[-\infty,b[$			

Los intervalos abiertos en $\overline{\mathbb{R}}$

$$\mathcal{J} := \{]a, b[: a, b \in \mathbb{R} \} \cup \{]a, +\infty] : a \in \mathbb{R} \} \cup \{ [-\infty, b[: b \in \mathbb{R} \}.$$

Lema

El conjunto ${\mathcal J}$ es cerrado bajo la operación $\cap.$

\cap]c, d[$]c,+\infty]$	$[-\infty,d[$
]a, b[
$]a,+\infty]$		$]\max(a,c),+\infty]$]a, d[
$[-\infty,b[$			

Los intervalos abiertos en $\overline{\mathbb{R}}$

$$\mathcal{J} := \{]a, b[: a, b \in \mathbb{R} \} \cup \{]a, +\infty] : a \in \mathbb{R} \} \cup \{ [-\infty, b[: b \in \mathbb{R} \}.$$

Lema

El conjunto ${\mathcal J}$ es cerrado bajo la operación $\cap.$

\cap]c, d[$]c,+\infty]$	$[-\infty,d[$
]a, b[$]\max(a,c),\min(b,d)[$	$]\max(a,c),b[$	$]a, \min(b, d)[$
$]a,+\infty]$	$]\max(a,c),d[$	$]\max(a,c),+\infty]$]a, d[
$[-\infty,b[$	$]c, \min(b, d)[$]c, b[$[-\infty, \min(b, d)[$

Por definición, los conjuntos abiertos en $\overline{\mathbb{R}}$ son las uniones arbitrarias de los elementos de \mathcal{J} :

$$\tau_{\overline{\mathbb{R}}} := \{ A \subseteq \overline{\mathbb{R}} \colon \exists \mathcal{K} \subseteq \mathcal{J} \colon A = \cup \mathcal{K} \}.$$

Por definición, los conjuntos abiertos en $\overline{\mathbb{R}}$ son las uniones arbitrarias de los elementos de \mathcal{J} :

$$\tau_{\overline{\mathbb{R}}} := \{ A \subseteq \overline{\mathbb{R}} \colon \quad \exists \mathcal{K} \subseteq \mathcal{J} \colon \ A = \cup \mathcal{K} \}.$$

Ejercicio. Usando el lema, demostrar que $au_{\overline{\mathbb{R}}}$ es una topología.

Por definición, los conjuntos abiertos en $\overline{\mathbb{R}}$ son las uniones arbitrarias de los elementos de \mathcal{J} :

$$\tau_{\overline{\mathbb{R}}} := \{ A \subseteq \overline{\mathbb{R}} \colon \exists \mathcal{K} \subseteq \mathcal{J} \colon A = \cup \mathcal{K} \}.$$

Ejercicio. Usando el lema, demostrar que $au_{\overline{\mathbb{R}}}$ es una topología.

En otras palabras, \mathcal{J} es una base de topología, y $\tau_{\overline{\mathbb{D}}}$ se define como la topología generada por esta base.

Por definición, los conjuntos abiertos en $\overline{\mathbb{R}}$ son las uniones arbitrarias de los elementos de \mathcal{J} :

$$\tau_{\overline{\mathbb{R}}} := \{ A \subseteq \overline{\mathbb{R}} \colon \exists \mathcal{K} \subseteq \mathcal{J} \colon A = \cup \mathcal{K} \}.$$

Ejercicio. Usando el lema, demostrar que $au_{\overline{\mathbb{R}}}$ es una topología.

En otras palabras, $\mathcal J$ es una base de topología, y $au_{\overline{\mathbb R}}$ se define como la topología generada por esta base.

Ejercicio. Demostrar que el conjunto $[3, +\infty]$ no es abierto en $\overline{\mathbb{R}}$.

Vecindades abiertas de los elementos de $\overline{\mathbb{R}}$

Dado a en $\overline{\mathbb{R}}$,

$$au_{\overline{\mathbb{R}}}(a) := \{ V \in au_{\overline{\mathbb{R}}} \colon a \in V \}.$$

Vecindades abiertas de los elementos de $\overline{\mathbb{R}}$

Dado a en $\overline{\mathbb{R}}$,

$$au_{\overline{\mathbb{R}}}(a) := \{ V \in au_{\overline{\mathbb{R}}} \colon a \in V \}.$$

Proposición (sobre las vecindades de los puntos finitos)

Sea $a \in \mathbb{R}$.

 \bullet Sing $a \in \mathbb{P}$ $a \neq a \neq a$ ontoness $a = a = a \neq a$

- - $\textbf{②} \ \, \mathsf{Si} \ \, V \in \tau_{\overline{\mathbb{R}}}(\mathsf{a}), \quad \mathsf{entonces} \ \mathsf{existen} \, \, p,q \in \mathbb{R} \, \, \mathsf{tales} \, \, \mathsf{que} \quad \, p < x < q \quad \mathsf{y} \quad]p,q[\subseteq V.$

Vecindades abiertas de los elementos de $\overline{\mathbb{R}}$

Dado a en $\overline{\mathbb{R}}$,

$$au_{\overline{\mathbb{R}}}(\mathsf{a}) \ \coloneqq \ \{ V \in au_{\overline{\mathbb{R}}} \colon \ \mathsf{a} \in V \}.$$

Proposición (sobre las vecindades de los puntos finitos)

Sea $a \in \mathbb{R}$.

- $\bullet \ \, \mathsf{Si} \,\, p,q \in \mathbb{R}, \,\, p < \mathsf{a} < \mathsf{q}, \quad \mathsf{entonces} \quad]p,q[\, \in \, \tau_{\overline{\mathbb{D}}}(\mathsf{a}).$
 - ② Si $V \in \tau_{\overline{\mathbb{R}}}(a)$, entonces existen $p, q \in \mathbb{R}$ tales que p < x < q y $]p, q[\subseteq V]$

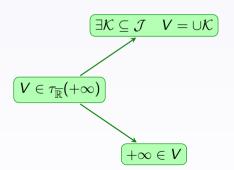
Ejercicio: demostrar esta proposición.

- lacksquare Para cada p en \mathbb{R} , $]p,+\infty] \in au_{\overline{\mathbb{R}}}(+\infty)$
- ② Para cada V en $\tau_{\mathbb{R}}(+\infty)$, existe p en \mathbb{R} tal que $]p,+\infty] \subseteq V$.

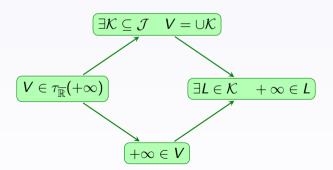
- ② Para cada V en $\tau_{\mathbb{R}}(+\infty)$, existe p en \mathbb{R} tal que $]p,+\infty] \subseteq V$.

$$\left(V\in au_{\overline{\mathbb{R}}}(+\infty)
ight)$$

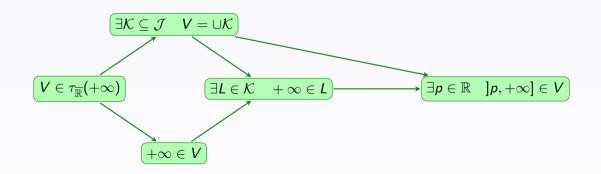
- $\bullet \ \mathsf{Para} \ \mathsf{cada} \ p \ \mathsf{en} \ \mathbb{R}, \quad]p,+\infty] \ \in \tau_{\overline{\mathbb{R}}}(+\infty)$
- ② Para cada V en $\tau_{\mathbb{R}}(+\infty)$, existe p en \mathbb{R} tal que $]p,+\infty] \subseteq V$.



- $\bullet \ \mathsf{Para} \ \mathsf{cada} \ p \ \mathsf{en} \ \mathbb{R}, \quad]p,+\infty] \in \tau_{\overline{\mathbb{R}}}(+\infty)$
- ② Para cada V en $au_{\overline{\mathbb{R}}}(+\infty)$, existe p en \mathbb{R} tal que $]p,+\infty] \subseteq V$.



- lacksquare Para cada p en $\mathbb{R},\quad]p,+\infty]\in au_{\overline{\mathbb{R}}}(+\infty)$
- ② Para cada V en $\tau_{\overline{\mathbb{R}}}(+\infty)$, existe p en \mathbb{R} tal que $]p,+\infty] \subseteq V$.



Vecindades abiertas del punto $-\infty$

Ejercicio.

Enunciar y demostrar una proposición similar sobre las vecindades abiertas del punto $-\infty$.

Sucesiones cuyo límite es $+\infty$

Proposición

Sea $(x_n)_{n\in\mathbb{N}}\in\overline{\mathbb{R}}^{\mathbb{N}}$. Entonces

$$\lim_{n\to\infty} x_n = +\infty \qquad \iff \qquad \forall a\in\mathbb{R} \qquad \exists k\in\mathbb{N} \qquad \forall n\geq k \qquad x_n>a.$$

Sucesiones cuyo límite es $+\infty$

Proposición

Sea $(x_n)_{n\in\mathbb{N}}\in\overline{\mathbb{R}}^{\mathbb{N}}$. Entonces

$$\lim_{n\to\infty} x_n = +\infty \qquad \iff \qquad \forall a\in\mathbb{R} \qquad \exists k\in\mathbb{N} \qquad \forall n\geq k \qquad x_n>a.$$

Idea de demostración:

usar la proposición sobre las vecindades abiertas de $+\infty$.

Sucesiones cuyo límite es $+\infty$

Proposición

Sea $(x_n)_{n\in\mathbb{N}}\in\overline{\mathbb{R}}^{\mathbb{N}}$. Entonces

$$\lim_{n\to\infty} x_n = +\infty \qquad \iff \qquad \forall a\in\mathbb{R} \qquad \exists k\in\mathbb{N} \qquad \forall n\geq k \qquad x_n > a.$$

$$a \in \mathbb{R} \qquad \exists k \in$$

$$\forall n \geq k \qquad x_n >$$

Idea de demostración:

usar la proposición sobre las vecindades abiertas de $+\infty$.

Ejercicio:

enunciar y demostrar un criterio similar para $\lim_{n \to \infty} x_n = -\infty$.

Operaciones aritméticas en el eje real extendido

$$a+(+\infty)=+\infty$$
 para todo $a\in\mathbb{R}.$

$$+\infty + (+\infty) = +\infty.$$

$$a+(-\infty)=-\infty$$
 para todo $a\in\mathbb{R}$.

$$-\infty + (-\infty) = -\infty.$$

$$+\infty + (-\infty)$$
 no está definido .

Operaciones aritméticas en el eje real extendido

$$a \cdot (+\infty) := +\infty$$
 para todo $a > 0$.

$$a \cdot (+\infty) := -\infty$$
 para todo $a < 0$.

$$a\cdot (-\infty) \ \coloneqq \ +\infty$$
 para todo $a>0$.

$$a \cdot (-\infty) := -\infty$$
 para todo $a < 0$.

$$0\cdot (+\infty) := 0.$$

$$0\cdot (-\infty)\ \coloneqq\ 0.$$

$$+\infty \cdot (+\infty) := +\infty.$$

$$+\infty \cdot (-\infty) := -\infty$$

$$-\infty \cdot (-\infty) := +\infty.$$

Ejercicio.

¿Es $(\overline{\mathbb{R}},+)$ un grupo?

Ejercicio.

¿Se puede definie $+\infty+(-\infty)$ de tal manera que $(\overline{\mathbb{R}},+)$ sea un grupo?

Ejercicio.

Demostrar que las operaciones + y \cdot en $[0, +\infty]$ cumplen con las leyes asociativas y conmutativas y también con la ley distributiva.

La ley de cancelación para la suma

Ejercicio.

Verificar que

$$\forall a \in [0, +\infty[\qquad \forall b, c \in \overline{\mathbb{R}} \qquad (a+b=a+c \implies b=c).$$

Ejercicio.

Verificar que la propiedad anterior no se extiende al caso $a=+\infty$.

La ley de cancelación para el producto

Ejercicio. Verificar que

$$\forall a \in]0, +\infty[\qquad \forall b, c \in \overline{\mathbb{R}} \qquad (ab = ac \implies b = c).$$

Ejercicio.

Verificar que la propiedad anterior no se extiende a los casos a=0 ni $a=+\infty$.

Sobre el acuerdo que $0 \cdot (+\infty) = 0$

El acuerdo que $0\cdot (+\infty)=0$ es cómodo en la teoría de la integral.

Sobre el acuerdo que $0 \cdot (+\infty) = 0$

El acuerdo que $0 \cdot (+\infty) = 0$ es cómodo en la teoría de la integral.

Ejercicio.

Encontrar sucesiones $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ de números reales tales que

$$x_n \to 0, \qquad y_n \to +\infty, \qquad x_n y_n \not\to 0.$$

Continidad de las operaciones en $[0, +\infty]$

Ejercicio.

Consideremos la operación + restringida a $[0,+\infty] \times [0,+\infty]$.

¿Es continua esta función?

Continidad de las operaciones en $[0, +\infty]$

Ejercicio.

Consideremos la operación + restringida a $[0, +\infty] \times [0, +\infty]$.

¿Es continua esta función?

Ejercicio.

Consideremos la operación de multiplicación restringida a $[0,+\infty] \times [0,+\infty]$.

¿Es continua esta función?