Subconjuntos conexos en espacios topológicos

Agradezco a Diana Marcela Erazo Borja por algunas correcciones y discusiones de estos apuntos.

Objetivos. Demostrar un par de criterios elementales de subconjuntos conexos en espacios topológicos.

Prerrequisitos. Conjuntos abiertos y cerrados en espacios topológicos, subespacio de un espacio topológico.

Definición 1. Sea (X, τ) un espacio topológico. Se dice que (X, τ) es disconexo si existen $P, Q \in \tau$ tales que $X = P \cup Q$, $P \cap Q = \emptyset$, $P \neq \emptyset$, $Q \neq \emptyset$.

Definición 2. Sea (X, τ) un espacio topológico. Se dice que (X, τ) es *conexo* si (X, τ) no es disconexo.

Observación 3. Sea (X, τ) un espacio topológico y sea $E \subseteq X$. Se define

$$\tau_E := \{A \cap E \colon A \in \tau\}.$$

Es posible demostrar que τ_E es una topología. Se dice que τ_E es la topología inducida. (E, τ_E) se llama subespacio topológico de (X, τ) .

Ejemplo 4. Sea $X=\mathbb{R}$ con la topología usual τ . Sea E=[0,5]. El conjunto [0,3) es abierto en E porque

$$[0,3) = E \cap (-1,3).$$

Definición 5. Sea (X, τ) un espacio topológico y sea $E \subseteq X$. Se dice que E es disconexo si el espacio topológico (E, τ_E) es disconexo.

Proposición 6. Sea (X, τ) un espacio topológico y sea $E \subseteq X$. Entonces, E es disconexo si, y solo si, existen $V, W \in \tau$ tales que

$$E \subseteq V \cup W, \qquad V \cap W \cap E = \emptyset, \qquad V \cap E \neq \emptyset, \qquad W \cap E \neq \emptyset.$$
 (1)

 $Demostración. \Rightarrow$. Sean $P,Q \in \tau_E$ como en la definición de espacio disconexo. Encontramos $V,W \in \tau$ tales que $P = V \cap E, Q = W \cap E$. Mostremos que V y W tienen las propiedades (1). Empezamos con las siguientes dos propiedades obvias:

$$V \cap E = P \neq \emptyset, \qquad W \cap E = Q.$$

Demostremos que $E \subseteq V \cup W$. Usamos la igualdad $P \cup Q = E$ y la propiedad distributiva:

$$E = P \cup Q = (V \cap E) \cup (W \cap E) = (V \cup W) \cap E.$$

De aquí concluimos que $E \subseteq V \cup W$.

Subconjuntos conexos en espacios topológicos, página 1 de 3

Demostremos que $V \cap E \cap E = \emptyset$. Usamos la igualdad $P \cap Q = \emptyset$ y varias propiedades de la operación \cap :

$$\emptyset = P \cap Q = (V \cap E) \cap (W \cap E) = V \cap W \cap E \cap E = V \cap W \cap E.$$

 \Leftarrow . Sean $V, W \in \tau$ tales que se cumplen (1). Pongamos $P := V \cap E$ y $Q := W \cap E$. Entonces, $P, Q \in \tau_E$, y es fácil ver que

$$E = P \cup Q, \quad P \cap Q = \emptyset, \quad P \neq \emptyset, \quad Q \neq \emptyset.$$

Observación 7. En lo que sigue, usamos mucho el siguiente hecho. Si $Y, Z \subseteq X$, entonces

$$Y \cap Z = \emptyset \iff Z \subseteq X \setminus Y.$$

Proposición 8. Sea (X, τ) un espacio topológico y sea $E \subseteq X$. Entonces, E es disconexo si, y solo si, existen $A, B \subseteq E$ tales que

$$E = A \cup B, \quad A \neq \emptyset, \quad B \neq \emptyset, \quad \operatorname{cl}(A) \cap B = \emptyset, \quad A \cap \operatorname{cl}(B) = \emptyset.$$
 (2)

 $Demostración. \Rightarrow$. Supongamos que E es disconexo. Encontramos $V, W \in \tau$ tales que se cumplen las propiedades (1). Pongamos

$$A := V \cap E$$
, $B := W \cap E$.

Entonces, es fácil ver que A y B satisfacen (2). Probemos solamente que $\operatorname{cl}(A) \cap B = \emptyset$. Como $V \cap W \cap E = \emptyset$, tenemos que

$$A = V \cap E \subseteq X \setminus W$$
.

Como $X \setminus W$ es cerrado,

$$cl(A) \subseteq cl(X \setminus W) = X \setminus W.$$

Luego $cl(A) \cap W = \emptyset$ y

$$cl(A) \cap B \subseteq cl(A) \cap W = \emptyset.$$

 \Leftarrow . Supongamos que $A, B \subseteq E$ tales que se cumplen (2). Pongamos

$$V := X \setminus \operatorname{cl}(B), \qquad W := X \setminus \operatorname{cl}(A).$$

Entonces, tenemos que $V, W \in \tau$,

$$A \subseteq X \setminus \operatorname{cl}(B) = V, \qquad B \subseteq X \setminus \operatorname{cl}(A) = W.$$

Por lo tanto,

$$V \cap E \supseteq V \cap A = A \neq \emptyset, \qquad W \cap E \supseteq W \cap B = B \neq \emptyset, \qquad E = A \cup B \subseteq V \cup W.$$

Además,

$$V\cap B=(X\setminus \operatorname{cl}(B))\cap B=\emptyset, \qquad W\cap A=(X\setminus \operatorname{cl}(A))\cap A=\emptyset.$$

Finalmente,

$$V \cap W \cap E = V \cap W \cap (A \cup B) \subseteq (V \cap B) \cup (W \cap A) = \emptyset.$$

Subconjuntos conexos en espacios topológicos, página 2 de 3

Corolario 9. Sea (X, τ) un espacio topológico y sea E un subconjunto cerrado disconexo de X. Entonces, existen subconjuntos cerrados no vacíos A y B de X tales que $E = A \cup B$ y $A \cap B = \emptyset$.

Demostración. Sean $A, B \subseteq E$ tales que se cumplen (2). Mostremos que A y B son cerrados. Primero, notamos que

$$cl(A) \subseteq cl(E) = E.$$

Luego

$$\operatorname{cl}(A) = \operatorname{cl}(A) \cap E = \operatorname{cl}(A) \cap (A \cup B) = (\operatorname{cl}(A) \cap A) \cup (\operatorname{cl}(A) \cap B) = A \cup \emptyset = A.$$

De manera similar, se puede mostrar que cl(B) = B.

Corolario 10. Sea (X, τ) un espacio topológico y sea E un subconjunto abierto disconexo de X. Entonces, existen subconjuntos abiertos no vacíos A, B de X tales que $E = A \cup B$ y $A \cap B = \emptyset$.

Demostración. Sean $V, W \in \tau$ tales que se cumplen (1). Pongamos $A := V \cap E$, $B := W \cap E$. Entonces, $A, B \in \tau$.

Ejemplo 11. Sea (X, τ) un espacio topológico y sea $x \in X$. Entonces, $\{x\}$ es un subconjunto conexo de X. En efecto, si $\{x\} = A \cup B$, donde $A \neq \emptyset$ y $B \neq \emptyset$, entonces $A = \{x\} = B$, y luego $A \cap \operatorname{cl}(B) = \operatorname{cl}(A) \cap B \neq \emptyset$.

Ejemplo 12. Sea $X = \mathbb{R}$, donde \mathbb{R} se considera con la topología usual. Entonces, el siguiente subconjunto de \mathbb{R} es disconexo:

$$E = (3,4) \cup (4,5).$$

Para demostrar que E es disconexo, podemos usar la Proposición 8 con

$$A = (3, 4), \qquad B = (4, 5).$$

Notemos que en este ejemplo $cl(A) \cap cl(B) \neq \emptyset$.

Componentes conexas

Proposición 13. Sea (X,τ) un espacio topológico y sea $x \in X$. Denotemos por Φ_x al conjunto de todos los subconjuntos conexos de X que contienen al punto x. Pongamos

$$E := \bigcup \Phi_x$$
.

Entonces, E es conexo $y x \in E$.