El espacio de Paley—Wiener en la recta real
y las series cardinales

Estos apuntes estan escritos por Iris Paola Lozano Vite y Egor Maximenko, en 2025 y
2026. Egor Maximenko agradece a Daniel Martin Vargas Cabello por estudiar juntos temas
muy cercanos (convergencia de series cardinales para f = Fg, donde g € L'([—a,a])).

Nota historica breve. Las siguientes ideas son conocidas. El teorema principal de estos
apuntes (Teorem 34) se conoce como el teorema de muestreo de Whittaker—Shannon (ver
[4] v [3]) v también se relaciona con los nombres de Borel, Nyquist y Kotelnikov. Sin em-
bargo, estos autores no explicaron muy bien la convergencia uniforme. Paley y Wiener [2]
introdujeron el espacio de las tranformadas de Fourier de L?([—a, a]), tratdndolo como
un espacio de funciones analiticas enteras. La propiedad reproductora en este espacio (el
Teorema 18 de estos apuntes) fue notada después, por ejemplo, en los trabajos de Yao [5]
y de Branges [1]. La convergencia uniforme de las series cardinales se entiende de manera
muy clara usando el concepto de espacios de Hilbert con nicleos reproductores.

Objetivos. Consideramos el espacio de Hilbert H de todas las funciones f: R — C,
continuas y cuadrado integrables, cuya transformada de Fourier se anula casi en todas
partes fuera del intervalo [—%, %] Demostramos que H es un espacio de Hilbert con
nicleo reproductor. Demostramos que cada funcién f de la clase H se expande en la serie
cardinal:

fle)= lim " f(k)sinc(z — k),
k=—m

donde sinc es la funcién seno cardinal (normalizada). Mdas atin, esta serie cardinal converge
de manera uniforme en cada subconjunto acotado de R.

Prerrequisitos. Espacios de Hilbert con nicleos reproductores (EHNR), transformada
de Fourier, identidad de Plancherel, serie cardinal.

1 Ejercicio. En vez del intervalo [—1/2,1/2], se puede considerar el intervalo [—a, a]; en
este caso, hay que usar otros nodos y dilatar las funciones sinc. Estas modificaciones se
proponen como un ejercicio para los lectores.

Preliminares

2 Repaso (espacios L'(R) y L?*(R)). Consideramos la recta real R con la medida de
Lebesgue A. Usamos la notacién £'(R) y £23(R) para los espacios seminormados de fun-
ciones Lebesgue integrables y cuadrado integrables, respectivamente. Decimos que dos
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funciones medibles son equivalentes, si son iguales casi en todas partes. Denotamos por
Z(R) al espacio vectorial de las funciones que son cero casi en todas partes. Recordemos
que L'(R) se define como el cociente £!'(R)/Z(R) y el espacio L*(R) se define como el
cociente £?(R)/Z(R). Los elementos de L!'(R) y L?(R) son clases de equivalencia. En lo
que sigue, pasamos de manera libre de funciones a sus clases de equivalencia. En estos
apuntes, consideramos L?(R) con el producto interno

<g>h>L2(R) :/gﬁd/\
R

3 Repaso (transformada de Fourier). Dado un elemento g del espacio L*(R), denotemos
por Fg su transformada de Fourier:

(Fo)(z) = /R g(t) e 2ot g,

La transformada F es lineal e inyectiva: si g,h € L'(R) y Fg = Fh, entonces g y h son
iguales como elementos de L'(R). Si g € L'(R)N L*(R), entonces se tienen las identidades
de Plancherel-Parseval:

1 Fgllzew = llgllz2m), (1)
(]:g, Fh>L2(R) = <g, h)LZ(R)' (2)

4 Repaso (el intervalo J = [—1/2,1/2] y el espacio L?(J)). En estos apuntes, denotamos
por J al intervalo de longitud 1 con centro en el origen:

11
J=|—-=,=.
st
El espacio L*(J) se puede identificar con el espacio de clases de equivalencia de las funcio-

nes g: R — C que son cuadrado integrables y que se anulan casi en todos puntos afuera
de J. Como A(J) =1 < +o0, por la desigualdad de Holder obtenemos que

L3(J) € L\(R).
El espacio principal

5 Definicién. Denotemos por H al conjunto de todas las funciones continuas f: R — C
tales que existe g en L*(J) tal que

f(z) = /Jg(t) e 2Tt g\ (1) (x € R).
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De manera mas concisa,
H={feCR): 3FgelL*(J) f=ZFg}
Definimos U: L?(J) — H,
Ug = Fyg.

6 Observacién. El espacio H se conoce como el espacio de funciones de banda limitada
(de ancho 1). Paley y Wiener demostraron que las funciones de la clase H admiten una
extension analitica en todo el plano complejo C, y describieron este espacio en términos del
crecimiento de estas funciones analiticas enteras. En estos apuntes, no vamos a estudiar
ni usar esta descripcién.

7 Observacién. Si g € L?(J) y f = Fg, entonces automdticamente f € Cy(R). Por lo
tanto, en la definiciéon de H podemos omitir la condicién que f es continua.

8 Observacién. Si f € H, entonces existe un tnico elemento g de L?(J) tal que f = Fg.

9 Observacién. Si f € H, entonces f € L3(R). Més atin, si g € L*(J) y f = Fg,
entonces, por la identidad de Plancherel,

I fllz2ey = [l9ll 2wy (3)

Siempre tratamos los elementos de H como funciones, no como clases de equivalencia.

10 Definicién. Definimos la norma en H como una restriccién de la seminorma del
espacio L2(R), y el producto interno como una restriccién del semiproducto interno en

L2(R):
= Zd

oo fobit = /R Fgdx.

Gracias a la biyeccion U y la identidad (3), de esta manera efectivamente obtenemos una
norma y un producto interno.

11 Proposicion. U es un isomorfismo isométrico de espacios de Hilbert.

Demostracion. Se sigue de las observaciones anteriores. O]
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12 Observacién (la transformacién inversa a U). La transformacién inversa de U coin-
cide con su adjunta y se puede calcular como la transformada de Fourier—Plancherel
inversa. Supongamos que f € H y g € L*(J) tal que f = Fg. Para cada r > 0, se define
u: R — C,
u,(t) = (z) e*™ ' d\(x).
[77"77‘}
Del teorema de Plancherel se sigue que

TEErHOO ||Ur B g”L2(R) =0

En otras palabras,
U f= lim w,,

r—-+00

donde el limite se entiende en la norma del espacio L?(R). Més atn, por el teorema de Car-
leson sobre la convergencia c.t.p. de las series y transformadas de Fourier, la convergencia
u, — ¢ se tiene casi en todos puntos.

H como un espacio de Hilbert con nicleo reproductor

13 Definiciéon. Para cada y en R, definimos ¢, : J — C,
oy (t) = Vit (telJ).
También podemos pensar que ¢, estd definida en R y se anula afuera de J. En lo que

sigue, tratamos ¢, como un elemento de L*(.J).

14 Definicién. Denotamos por sinc la funcién seno cardinal (normalizada):

sin(7x) reR \ {O},

Tx

sinc(x) =
1, xz=0.

Es facil ver que sinc es una funcién continua en R. Mas ain, sinc se podria considerar
como una funcién entera analitica en C, pero en estos apuntes la condideramos en el
dominio R.

15 Definicién. Para cada y en R, denotamos por sinc, la funcién sinc desplazada con el
parametro de desplazamiento y:

sinc, (z) = sinc(x — y).
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16 Proposicion. Para cada y en R, sinc, € H y

Up, = Fp, = sinc, . (4)

Demostracion. Para x # vy,

) , 1/2 _
(Fipy) (@) = / eI 72T q)\(1) = / it g
J _

1/2
Ti(y—z) _ o—wi(y—z) i _
= ¢ i = sin(mly — v)) = sinc(y — x) = sinc(x — y).
2mi(y —x) m(y — )

Para = = a, podemos hacer un calculo de manera separada o aplicar la continuidad de la
funcién F,. O

17 Proposicién (la propiedad reproductora en H). Para cada f en H y cada y en R,

(f;sincy) i = f(y).

Demostracién. Sea f € H y sea y € R. Encontramos g en L?(J) tal que f = Fg. Luego
(f.sincy)y = (Ug, Upy) i = (9, ¢y) 12(x)

- /Jg(t) e AN(t) = (Fo)(y) = f(y)- =

18 Teorema. H es un FHNR, y su nucleo reproductor es

K(z,y) = sinc(z — y) = sinc,(z) (z,a € R).

Demostracion. Para cada y en R, por la Proposicién 16, sinc, € H. La Proposicién 17 es
la propiedad reproductora. O

19 Proposicién (la norma del nicleo asociado a un punto). Para cada x en R,

|| sinc, ||g = 1.

Demostracion. Usamos la propiedad reproductora:

| sinc,, ||3; = (sinc,, sinc.) g = sinc,(z) = 1. [
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Sabemos una propiedad general de EHNR: la convergencia en norma implica la conver-
gencia puntual. Para el espacio H, podemos afirmar algo mas fuerte: la convergencia en
norma en H implica la convergencia uniforme.

20 Repaso. Denotamos por Cy(R) al conjunto de las funciones continuas R — C que
tienden a 0 en el infinito. Consideramos Cy(R) con la norma-supremo:

[fllcoy = Il fllsup = sup | f(2)].
z€R

Se sabe que Cy(R) es un espacio de Banach. Mas atun, Cy(R) un algebra C* no unitaria,
pero no lo vamos a usar en estos apuntes.

21 Proposicién (la norma-supremo se acota por la norma en H). Para cada f en H,
feGR)y
[ llsup < 1112

Demostracion. Se sigue de la propiedad reproductora y de la Proposicion 19. En efecto,
para cada x en R,

|f (@) = [(f, sinca)| < [|f[|all since ||z = [1f ]|z O

22 Proposicién. Si (h,,)men €s una sucesion convergente en H y f es su limite, entonces
(him)men converge a f de manera uniforme. En otras palabras, si

lim ||hy — flla =0,
m—o0

entonces
1 || — fllsup = 0.
m—00

Demostracion. Se sigue de la Proposion 21 y del teorema de emparedado:

0 < [hm = fllz < hm = fllsup — 0. =

La base ortonormal canénica L?(J) y series de Fourier

23 Repaso. Se sabe que la sucesién (¢p)rez es una base ortonormal de L?(J). Verifique-
mos la propiedad ortonormal. Si p,q € Z y p # q, entonces

1/2 eﬂ-i(p_q) J— e_ﬂ-i(p_q)

(@ps Pg)2(0) = / il gt = . =0.
Pl —1/2 2mi(p —q)
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Si p = ¢, entonces
1/2

(©p, Op)2() = / 1dt = 1.

~1/2
La completez (la propiedad total) de la sucesion (@ )rez es una consequencia del teorema
de Weierstrass sobre los polinomios trigonométricos. Esta propiedad también se puede
deducir como una consequencia del teorema de Stone—Weierstrass.

24 Proposicién (el coeficiente de Fourier de una funcién en términos de su transformada
de Fourier). Si g € L*(J), f =Ug y k € Z, entonces

(9, 0r)r20) = f(K).

Demostracion.

(9, 00) = / grdr = / g(t) 2 AN(1) = (Fg)(k) = F(k). 0

25 Definicién. Definimos B: (*(Z) — L?*(J) mediante la regla

m

Bs = Z SkPk-

k=—m

26 Observaciéon. Por la teoria general de bases ortonormales, B es un isomorfismo
isométrico, y su inverso esta dado por

B lg = (<9a 80k>>

En otras palabras, B~!g es la sucesién de los coeficientes de Fourier de g. Si f = F f,
entonces, por la Proposicion 24,

kez

(B™'g) = f(k).
27 Proposicién. Sig e L*(J) y f = Ug, entonces

9 - Z f (k)

k=—m

=0.
L2(J)

lim
m—o0

Demostracion. Este resultado sale de la teoria general de bases ortonormales y de la
Proposicién 24. Como g € L*(J) y (or)rez €s una base ortonormal de L?(.J), sabemos
que

dim llg— > (g.o0)ee| =0
k=—m LQ(J)
Aplicando la Proposicion 24, obtenemos el resultado requerido. O
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La base ortonormal candnica en H
28 Proposicién. (sincg)gez es una base ortonormal de H.

Demostracién. Se sigue de las propiedades que hemos notado previamente: U: L*(J) — H
es un isomorfismo isométrico, (¢ )rez €s una base ortonormal de L?(J), Up_y, = sincy,. [

29 Definicién. Definimos G': (*(Z) — H,

o0

Gs = E Sy sincy,,

k=—o00

donde la convergencia se entiende en la norma del espacio H. Por la teoria general de
bases ortonormales en espacios de Hilbert, GG es un isomorfismo isométrico de espacios de
Hilbert, y su inverso actia mediante la siguiente regla:

Glf = ((f, sinck>>

kez

30 Observacion. Por la Proposicién 17, la férmula para G f se simplifica:

(G™ ) = (f,sincy) = f(k).

31 Definicién (las sumas parciales de la serie cardinal de una funcién). Para cada f en
H y cada m en N, definimos S,,: R = C,

Stm = Z f(k)sincy .

k=—m

De manera mas detallada,

Sram(x) = > f(k)sincg ().

k=—m

32 Proposicion. Para cada f en H,

nl;n;o f- Z f(k)sincg|| =0. (5)
k=—m H
En forma mds concisa,
i ([~ Syl = 0. (6)
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Demostracion. Para cada k en Z, por la propiedad reproductora,

(f.sincg) g = f(k).

Como (sincy)gez es una base ortonormal en H, la siguiente descomposicién se tiene en el
sentido de la convergencia en H:

f= Zf(k) sincy, .

kEZ

La convergencia de la serie ortogonal se puede entender de varias maneras (por ejemplo,
como la convergencia de una red, cuando el conjunto de los indices crece). En particular,
se tiene el siguiente limite en H:

f= mlgréo k_z_: f(k}) SINCy,
y es exactamente el limite (5). O

33 Proposicién (la identidad de Parseval para las series cardinales). Si f € H, entonces

5= > 1FR)P

k=—o00

El siguiente diagrama conmutativo muestra los isomorfismos isométricos naturales entre
los espacios H, L?(J) y (*(Z).

U~! (Fourier-Plancherel inversa)

oy C_ w0 D

U (Fourier)

A

G:

S Y Spsincg
keZ
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Convergencia uniforme de la serie cardinal
El siguiente teorema es una version del teorema de muestreo de Whittaker—Shannon.

34 Teorema. Para cada f en H y cada x en R,
)= Jim 3 fh)sincte —b) (7)

Mas aun, la convergencia es uniforme:

lim su sinc(x — =0. 8
Jimsup k_sz K) ®)

Demostracion. El teorema se sigue facilmente de las Proposiciones 32 y 22. Daremos una
explicaciéon més detallada. Sea f € H. Para cada m en N, definimos S¢,,: R — C como

la suma parcial
= Z f (k) sincy, .

k=—m
En particular, S¢,, es un elemento de H, por ser una combinacién lineal de las funciones
sinc. De manera mas explicita,

Stm(x Z f(k)sinc(x — k).

k=—m

Por la Proposicién 21,
1S rm = Fllsup < NSpam — flla-

Por la Proposicién 32, la iltima expresion tiende a 0. O
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