
El espacio de Paley–Wiener en la recta real

y las series cardinales

Estos apuntes están escritos por Iris Paola Lozano Vite y Egor Maximenko, en 2025 y
2026. Egor Maximenko agradece a Daniel Martin Vargas Cabello por estudiar juntos temas
muy cercanos (convergencia de series cardinales para f = Fg, donde g ∈ L1([−a, a])).

Nota histórica breve. Las siguientes ideas son conocidas. El teorema principal de estos
apuntes (Teorem 34) se conoce como el teorema de muestreo de Whittaker–Shannon (ver
[4] y [3]) y también se relaciona con los nombres de Borel, Nyquist y Kotelnikov. Sin em-
bargo, estos autores no explicaron muy bien la convergencia uniforme. Paley y Wiener [2]
introdujeron el espacio de las tranformadas de Fourier de L2([−a, a]), tratándolo como
un espacio de funciones anaĺıticas enteras. La propiedad reproductora en este espacio (el
Teorema 18 de estos apuntes) fue notada después, por ejemplo, en los trabajos de Yao [5]
y de Branges [1]. La convergencia uniforme de las series cardinales se entiende de manera
muy clara usando el concepto de espacios de Hilbert con núcleos reproductores.

Objetivos. Consideramos el espacio de Hilbert H de todas las funciones f : R → C,
continuas y cuadrado integrables, cuya transformada de Fourier se anula casi en todas
partes fuera del intervalo

[
−1

2
, 1
2

]
. Demostramos que H es un espacio de Hilbert con

núcleo reproductor. Demostramos que cada función f de la clase H se expande en la serie
cardinal:

f(x) = ĺım
m→∞

m∑
k=−m

f(k) sinc(x− k),

donde sinc es la función seno cardinal (normalizada). Más aún, esta serie cardinal converge
de manera uniforme en cada subconjunto acotado de R.

Prerrequisitos. Espacios de Hilbert con núcleos reproductores (EHNR), transformada
de Fourier, identidad de Plancherel, serie cardinal.

1 Ejercicio. En vez del intervalo [−1/2, 1/2], se puede considerar el intervalo [−a, a]; en
este caso, hay que usar otros nodos y dilatar las funciones sinc. Estas modificaciones se
proponen como un ejercicio para los lectores.

Preliminares

2 Repaso (espacios L1(R) y L2(R)). Consideramos la recta real R con la medida de
Lebesgue λ. Usamos la notación L1(R) y L2(R) para los espacios seminormados de fun-
ciones Lebesgue integrables y cuadrado integrables, respectivamente. Decimos que dos
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funciones medibles son equivalentes, si son iguales casi en todas partes. Denotamos por
Z(R) al espacio vectorial de las funciones que son cero casi en todas partes. Recordemos
que L1(R) se define como el cociente L1(R)/Z(R) y el espacio L2(R) se define como el
cociente L2(R)/Z(R). Los elementos de L1(R) y L2(R) son clases de equivalencia. En lo
que sigue, pasamos de manera libre de funciones a sus clases de equivalencia. En estos
apuntes, consideramos L2(R) con el producto interno

⟨g, h⟩L2(R) :=

∫
R
g h dλ.

3 Repaso (transformada de Fourier). Dado un elemento g del espacio L1(R), denotemos
por Fg su transformada de Fourier:

(Fg)(x) :=

∫
R
g(t) e−2π ixt dt.

La transformada F es lineal e inyectiva: si g, h ∈ L1(R) y Fg = Fh, entonces g y h son
iguales como elementos de L1(R). Si g ∈ L1(R)∩L2(R), entonces se tienen las identidades
de Plancherel–Parseval:

∥Fg∥L2(R) = ∥g∥L2(R), (1)

⟨Fg,Fh⟩L2(R) = ⟨g, h⟩L2(R). (2)

4 Repaso (el intervalo J = [−1/2, 1/2] y el espacio L2(J)). En estos apuntes, denotamos
por J al intervalo de longitud 1 con centro en el origen:

J :=

[
−1

2
,
1

2

]
.

El espacio L2(J) se puede identificar con el espacio de clases de equivalencia de las funcio-
nes g : R → C que son cuadrado integrables y que se anulan casi en todos puntos afuera
de J . Como λ(J) = 1 < +∞, por la desigualdad de Hölder obtenemos que

L2(J) ⊆ L1(R).

El espacio principal

5 Definición. Denotemos por H al conjunto de todas las funciones continuas f : R → C
tales que existe g en L2(J) tal que

f(x) =

∫
J

g(t) e−2π ixt dλ(t) (x ∈ R).
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De manera más concisa,

H :=
{
f ∈ C(R) : ∃g ∈ L2(J) f = Fg

}
.

Definimos U : L2(J) → H,
Ug := Fg.

6 Observación. El espacio H se conoce como el espacio de funciones de banda limitada
(de ancho 1). Paley y Wiener demostraron que las funciones de la clase H admiten una
extensión anaĺıtica en todo el plano complejo C, y describieron este espacio en términos del
crecimiento de estas funciones anaĺıticas enteras. En estos apuntes, no vamos a estudiar
ni usar esta descripción.

7 Observación. Si g ∈ L2(J) y f = Fg, entonces automáticamente f ∈ C0(R). Por lo
tanto, en la definición de H podemos omitir la condición que f es continua.

8 Observación. Si f ∈ H, entonces existe un único elemento g de L2(J) tal que f = Fg.

9 Observación. Si f ∈ H, entonces f ∈ L2(R). Más aún, si g ∈ L2(J) y f = Fg,
entonces, por la identidad de Plancherel,

∥f∥L2(R) = ∥g∥L2(R). (3)

Siempre tratamos los elementos de H como funciones, no como clases de equivalencia.

10 Definición. Definimos la norma en H como una restricción de la seminorma del
espacio L2(R), y el producto interno como una restricción del semiproducto interno en
L2(R):

∥f∥H :=

∫
R
|f |2 dλ,

⟨f1, f2⟩H :=

∫
R
f g dλ.

Gracias a la biyección U y la identidad (3), de esta manera efectivamente obtenemos una
norma y un producto interno.

11 Proposición. U es un isomorfismo isométrico de espacios de Hilbert.

Demostración. Se sigue de las observaciones anteriores.
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12 Observación (la transformación inversa a U). La transformación inversa de U coin-
cide con su adjunta y se puede calcular como la transformada de Fourier–Plancherel
inversa. Supongamos que f ∈ H y g ∈ L2(J) tal que f = Fg. Para cada r > 0, se define
ur : R → C,

ur(t) :=

∫
[−r,r]

f(x) e2π i tx dλ(x).

Del teorema de Plancherel se sigue que

ĺım
r→+∞

∥ur − g∥L2(R) = 0.

En otras palabras,
U−1f = ĺım

r→+∞
ur,

donde el ĺımite se entiende en la norma del espacio L2(R). Más aún, por el teorema de Car-
leson sobre la convergencia c.t.p. de las series y transformadas de Fourier, la convergencia
ur → g se tiene casi en todos puntos.

H como un espacio de Hilbert con núcleo reproductor

13 Definición. Para cada y en R, definimos φy : J → C,

φy(t) := e2πy i t (t ∈ J).

También podemos pensar que φy está definida en R y se anula afuera de J . En lo que
sigue, tratamos φy como un elemento de L2(J).

14 Definición. Denotamos por sinc la función seno cardinal (normalizada):

sinc(x) :=


sin(πx)

πx
, x ∈ R \ {0},

1, x = 0.

Es fácil ver que sinc es una función continua en R. Más aún, sinc se podŕıa considerar
como una función entera anaĺıtica en C, pero en estos apuntes la condideramos en el
dominio R.

15 Definición. Para cada y en R, denotamos por sincy la función sinc desplazada con el
parámetro de desplazamiento y:

sincy(x) := sinc(x− y).
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16 Proposición. Para cada y en R, sincy ∈ H y

Uφy = Fφy = sincy . (4)

Demostración. Para x ̸= y,

(Fφy)(x) =

∫
J

e2π i yt e−2π ixt dλ(t) =

∫ 1/2

−1/2

e2π i (y−x)t dt

=
eπ i (y−x) − e−π i (y−x)

2π i (y − x)
=

sin(π(y − x))

π(y − x)
= sinc(y − x) = sinc(x− y).

Para x = a, podemos hacer un cálculo de manera separada o aplicar la continuidad de la
función Fφa.

17 Proposición (la propiedad reproductora en H). Para cada f en H y cada y en R,

⟨f, sincy⟩H = f(y).

Demostración. Sea f ∈ H y sea y ∈ R. Encontramos g en L2(J) tal que f = Fg. Luego

⟨f, sincy⟩H = ⟨Ug, Uφy⟩H = ⟨g, φy⟩L2(R)

=

∫
J

g(t) e−2π i yt dλ(t) = (Fg)(y) = f(y).

18 Teorema. H es un EHNR, y su núcleo reproductor es

K(x, y) = sinc(x− y) = sincy(x) (x, a ∈ R).

Demostración. Para cada y en R, por la Proposición 16, sincy ∈ H. La Proposición 17 es
la propiedad reproductora.

19 Proposición (la norma del núcleo asociado a un punto). Para cada x en R,

∥ sincx ∥H = 1.

Demostración. Usamos la propiedad reproductora:

∥ sincx ∥2H = ⟨sincx, sincc⟩H = sincx(x) = 1.
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Sabemos una propiedad general de EHNR: la convergencia en norma implica la conver-
gencia puntual. Para el espacio H, podemos afirmar algo más fuerte: la convergencia en
norma en H implica la convergencia uniforme.

20 Repaso. Denotamos por C0(R) al conjunto de las funciones continuas R → C que
tienden a 0 en el infinito. Consideramos C0(R) con la norma-supremo:

∥f∥C0(R) = ∥f∥sup := sup
x∈R

|f(x)|.

Se sabe que C0(R) es un espacio de Banach. Más aún, C0(R) un álgebra C* no unitaria,
pero no lo vamos a usar en estos apuntes.

21 Proposición (la norma-supremo se acota por la norma en H). Para cada f en H,
f ∈ C0(R) y

∥f∥sup ≤ ∥f∥H .

Demostración. Se sigue de la propiedad reproductora y de la Proposición 19. En efecto,
para cada x en R,

|f(x)| = |⟨f, sincx⟩| ≤ ∥f∥H∥ sincx ∥H = ∥f∥H .

22 Proposición. Si (hm)m∈N es una sucesión convergente en H y f es su ĺımite, entonces
(hm)m∈N converge a f de manera uniforme. En otras palabras, si

ĺım
m→∞

∥hm − f∥H = 0,

entonces
ĺım

m→∞
∥hm − f∥sup = 0.

Demostración. Se sigue de la Proposión 21 y del teorema de emparedado:

0 ≤ ∥hm − f∥H ≤ ∥hm − f∥sup → 0.

La base ortonormal canónica L2(J) y series de Fourier

23 Repaso. Se sabe que la sucesión (φk)k∈Z es una base ortonormal de L2(J). Verifique-
mos la propiedad ortonormal. Si p, q ∈ Z y p ̸= q, entonces

⟨φp, φq⟩L2(J) =

∫ 1/2

−1/2

e2π i (p−q)t dt =
eπ i (p−q) − e−π i (p−q)

2π i (p− q)
= 0.
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Si p = q, entonces

⟨φp, φp⟩L2(J) =

∫ 1/2

−1/2

1 dt = 1.

La completez (la propiedad total) de la sucesión (φk)k∈Z es una consequencia del teorema
de Weierstrass sobre los polinomios trigonométricos. Esta propiedad también se puede
deducir como una consequencia del teorema de Stone–Weierstrass.

24 Proposición (el coeficiente de Fourier de una función en términos de su transformada
de Fourier). Si g ∈ L2(J), f = Ug y k ∈ Z, entonces

⟨g, φk⟩L2(J) = f(k).

Demostración.

⟨g, φk⟩ =
∫
J

g φk dλ =

∫
J

g(t) e−2π i kt dλ(t) = (Fg)(k) = f(k).

25 Definición. Definimos B : ℓ2(Z) → L2(J) mediante la regla

Bs :=
m∑

k=−m

skφk.

26 Observación. Por la teoŕıa general de bases ortonormales, B es un isomorfismo
isométrico, y su inverso está dado por

B−1g =
(
⟨g, φk⟩

)
k∈Z

.

En otras palabras, B−1g es la sucesión de los coeficientes de Fourier de g. Si f = F̃f ,
entonces, por la Proposición 24,

(B−1g)k = f(k).

27 Proposición. Si g ∈ L2(J) y f = Ug, entonces

ĺım
m→∞

∥∥∥∥∥g −
m∑

k=−m

f(k)φk

∥∥∥∥∥
L2(J)

= 0.

Demostración. Este resultado sale de la teoŕıa general de bases ortonormales y de la
Proposición 24. Como g ∈ L2(J) y (φk)k∈Z es una base ortonormal de L2(J), sabemos
que

ĺım
m→∞

∥∥∥∥∥g −
m∑

k=−m

⟨g, φk⟩φk

∥∥∥∥∥
L2(J)

= 0.

Aplicando la Proposición 24, obtenemos el resultado requerido.
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La base ortonormal canónica en H

28 Proposición. (sinck)k∈Z es una base ortonormal de H.

Demostración. Se sigue de las propiedades que hemos notado previamente: U : L2(J) → H
es un isomorfismo isométrico, (φk)k∈Z es una base ortonormal de L2(J), Uφ−k = sinck.

29 Definición. Definimos G : ℓ2(Z) → H,

Gs :=
∞∑

k=−∞

sk sinck,

donde la convergencia se entiende en la norma del espacio H. Por la teoŕıa general de
bases ortonormales en espacios de Hilbert, G es un isomorfismo isométrico de espacios de
Hilbert, y su inverso actúa mediante la siguiente regla:

G−1f =
(
⟨f, sinck⟩

)
k∈Z

.

30 Observación. Por la Proposición 17, la fórmula para Gf se simplifica:

(G−1f)k = ⟨f, sinck⟩ = f(k).

31 Definición (las sumas parciales de la serie cardinal de una función). Para cada f en
H y cada m en N, definimos Sf,m : R → C,

Sf,m :=
m∑

k=−m

f(k) sinck .

De manera más detallada,

Sf,m(x) =
m∑

k=−m

f(k) sinck(x).

32 Proposición. Para cada f en H,

ĺım
m→∞

∥∥∥∥∥f −
m∑

k=−m

f(k) sinck

∥∥∥∥∥
H

= 0. (5)

En forma más concisa,
ĺım

m→∞
∥f − Sf,m∥H = 0. (6)
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Demostración. Para cada k en Z, por la propiedad reproductora,

⟨f, sinck⟩H = f(k).

Como (sinck)k∈Z es una base ortonormal en H, la siguiente descomposición se tiene en el
sentido de la convergencia en H:

f =
∑
k∈Z

f(k) sinck .

La convergencia de la serie ortogonal se puede entender de varias maneras (por ejemplo,
como la convergencia de una red, cuando el conjunto de los ı́ndices crece). En particular,
se tiene el siguiente ĺımite en H:

f = ĺım
m→∞

m∑
k=−m

f(k) sinck,

y es exactamente el ĺımite (5).

33 Proposición (la identidad de Parseval para las series cardinales). Si f ∈ H, entonces

∥f∥2H =
∞∑

k=−∞

|f(k)|2.

El siguiente diagrama conmutativo muestra los isomorfismos isométricos naturales entre
los espacios H, L2(J) y ℓ2(Z).

H L2(J)

ℓ2(Z)

U−1 (Fourier–Plancherel inversa)

U (Fourier)

G−1 :
f 7→ f ↾Z

G :
s 7→

∑
k∈Z

sk sinck
B−1

B : s 7→
∑
k∈Z

skφk
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Convergencia uniforme de la serie cardinal

El siguiente teorema es una versión del teorema de muestreo de Whittaker–Shannon.

34 Teorema. Para cada f en H y cada x en R,

f(x) = ĺım
m→∞

m∑
k=−m

f(k) sinc(x− k). (7)

Más aún, la convergencia es uniforme:

ĺım
m→∞

sup
x∈R

∣∣∣∣∣f(x)−
m∑

k=−m

f(k) sinc(x− k)

∣∣∣∣∣ = 0. (8)

Demostración. El teorema se sigue fácilmente de las Proposiciones 32 y 22. Daremos una
explicación más detallada. Sea f ∈ H. Para cada m en N, definimos Sf,m : R → C como
la suma parcial

Sf,m :=
m∑

k=−m

f(k) sinck .

En particular, Sf,m es un elemento de H, por ser una combinación lineal de las funciones
sinck. De manera más expĺıcita,

Sf,m(x) =
m∑

k=−m

f(k) sinc(x− k).

Por la Proposición 21,
∥Sf,m − f∥sup ≤ ∥Sf,m − f∥H .

Por la Proposición 32, la última expresión tiende a 0.
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