Función Gamma de Euler: definición, fórmula recursiva y continuidad

Objetivos. Demostrar que la función Gamma de Euler, definida por medio de la integral de Euler del primer tipo

$$\Gamma(x) := \int_{0}^{+\infty} t^{x-1} e^{-t} dt,$$

está bien definida (la integral converge), satisface la fórmula recursiva

$$\Gamma(x+1) = x\Gamma(x),$$

y es continua en $(0, +\infty)$.

Integrales auxiliares

1 Proposición. Para cada x > 0,

$$\int_{0}^{1} t^{x-1} \, \mathrm{d}t = \frac{1}{x}.$$

Demostración.

$$\int_{0}^{1} t^{x-1} dt = \lim_{u \to 0^{+}} \int_{u}^{1} t^{x-1} dt = \lim_{u \to 0^{+}} \frac{t^{x}}{x} \Big|_{u}^{1} = \lim_{u \to 0^{+}} \frac{1 - u^{x}}{x} = \frac{1}{x}.$$

2 Proposición. Para cada $\alpha > 0$,

$$\int_{0}^{+\infty} e^{-\alpha t} dt = \frac{1}{\alpha}.$$

Demostración.

$$\int_{0}^{+\infty} e^{-\alpha t} dt = \lim_{v \to +\infty} \int_{0}^{v} e^{-\alpha t} dt = \left. \frac{e^{-\alpha t}}{\alpha} \right|_{+\infty}^{0} = \frac{1}{\alpha}.$$

3 Proposición. Para cada m en \mathbb{N} y cada $t \geq 1$,

$$t^m \le m! \, 2^m \, \operatorname{e}^{t/2}.$$

Demostración.

$$e^{t/2} = \sum_{k=0}^{+\infty} \frac{1}{k!} \left(\frac{t}{2}\right)^k \ge \frac{t^m}{2^m m!}.$$

Función Gamma de Euler, página 1 de 3

4 Proposición. Para cada b > 0,

$$\int_{1}^{+\infty} t^{b-1} e^{-t} dt < +\infty.$$

Demostración. Sea $m \in \mathbb{N}_0$ tal que $m \geq b-1$ (por ejemplo, $m := \lfloor b \rfloor$). Entonces, por las Proposiciones 3 y 2,

$$\int_{1}^{+\infty} t^{b-1} e^{-t} dt \le \int_{1}^{+\infty} t^{m} e^{-t} dt \le 2^{m} m! \int_{1}^{+\infty} e^{-t/2} dt < +\infty.$$

Definición de la función Γ

5 Proposición. Para cada x > 0,

$$\int_{0}^{+\infty} t^{x-1} e^{-t} dt < +\infty.$$

Demostración. Se sigue de las Proposiciones 1 y 4:

$$\int_{0}^{+\infty} t^{x-1} e^{-t} dt = \int_{0}^{1} t^{x-1} e^{-t} dt + \int_{1}^{+\infty} t^{x-1} e^{-t} dt \le \int_{0}^{1} t^{x-1} dt + \int_{1}^{+\infty} t^{x-1} e^{-t} dt < +\infty.$$

6 Definición (la función Gamma de Euler). Definimos $\Gamma: (0, +\infty) \to \mathbb{R}$,

$$\Gamma(x) := \int_{0}^{+\infty} e^{-t} t^{x-1} dt.$$

Continuidad de la función Γ

7 Proposición. La función Γ es continua.

Demostración. Es suficiente mostrar que Γ es continua en cada intervalo de la forma (a, b), donde $0 < a < b < +\infty$, porque cada punto $(0, +\infty)$ pertenece a un intervalo esta forma. Sean $a, b \in \mathbb{R}$ tales que 0 < a < b. Definimos $f: (0, +\infty) \times (a, b) \to \mathbb{R}$, $g: (0, +\infty) \to [0, +\infty)$ mediante las siguientes reglas:

$$f(t,x) := e^{-t} t^{x-1}, \qquad g(t) := \begin{cases} e^{-t} t^{a-1}, & 0 < t \le 1; \\ e^{-t} t^{b-1}, & t > 1. \end{cases}$$

Función Gamma de Euler, página 2 de 3

Para cada t en $(0, +\infty)$, la función f_t es continua. Si $t \in (0, 1]$ y $x \in (a, b)$, entonces $t^{x-1} \leq t^{a-1}$. Si $t \in (1, +\infty)$ y $x \in (a, b)$, entonces $t^{x-1} \leq t^{b-1}$. Luego para cada t en $(0, +\infty)$ y cada x en (a, b) se cumplen las designaldades

$$0 \le f(t, x) \le g(t)$$
.

Usando las Proposiciones 1 y 4 Probemos que g es integrable:

$$\int_{0}^{+\infty} g(t) dt = \int_{0}^{1} e^{-t} t^{a-1} dt + \int_{1}^{+\infty} e^{-t} t^{b-1} dt$$

$$\leq \int_{0}^{1} t^{-a} dt + \int_{1}^{+\infty} e^{-t} t^{b-1} dt < +\infty.$$

Se cumplen las condiciones del teorema sobre la continuidad de una función definida por una integral con parámetro. Por este teorema, Γ es continua en (a, b). Como los intervalos de esta forma cubren $(0, +\infty)$, concluimos que Γ es continua en $(0, +\infty)$.

Fórmula recursiva para la función Γ

8 Proposición (fórmula recursiva para la función Γ). Para cada x > 0,

$$\Gamma(x+1) = x\Gamma(x).$$

9 Proposición (relación entre la función Γ y la función factorial). Para cada n en \mathbb{N}_0 ,

$$\Gamma(n+1) = n!.$$