Sumas parciales de la progresión geométrica.
Deducción de la fórmula con la notación sigma

Objetivos. Deducir una fórmula para la suma \(\sum_{k=0}^{n-1} q^k \).

Requisitos. Notación \(\sum \), experiencia de trabajar con sumas de la forma

\[1 + q + q^2 + \ldots + q^m. \]

Ejemplo y generalización (repaso)

1. Ejemplo. Calcular el producto \((1 - q)(1 + q + q^2 + q^3 + q^4)\).

Solución. Primero multiplicamos \(1 + q + q^2 + q^3 + q^4\) por 1, luego por \(-q\). Expandimos los productos y simplificamos la suma:

\[
(1 - q)(1 + q + q^2 + q^3 + q^4)
\]

\[
= 1 + q + q^2 + q^3 + q^4 - q - q^2 - q^3 - q^4 = \cdots \]

2. Generalización. Basándose en el ejemplo anterior adivine la fórmula general:

\[
(1 - q)(1 + q + q^2 + \ldots + q^{n-1}) =
\]

3. Despeje la suma \(1 + q + q^2 + \ldots + q^{n-1}\) de la fórmula obtenida en el ejercicio anterior. Dividiendo entre \(1 - q\) hay que suponer que \(1 - q \neq 0\).

\[
1 + q + q^2 + \ldots + q^{n-1} = \text{ donde } q \neq \cdots
\]

4. Caso excepcional \(q = 1\) (repaso).

La suma \(1 + q + q^2 + \cdots + q^{n-1}\) consta de \(\cdots\) sumandos.

Por eso, si \(q = 1\), entonces

\[
1 + q + q^2 + \cdots + q^{n-1} = \cdots.
\]
Notación breve para sumas (repaso)

El símbolo \sum proviene de la letra griega “sigma” y se usa para denotar sumas.

5. Ejemplo. \[\sum_{j=3}^{6} a_j = a_3 + a_4 + a_5 + a_6. \]

6. Ejemplo. \[\sum_{k=2}^{4} 5^k = 5^2 + ? + ? = 25 + ? + ? = ?. \]

7. Escriba las siguientes sumas en forma explícita (todos los sumandos):
 \[\sum_{k=0}^{4} q^k = \]
 \[\sum_{j=2}^{5} \frac{1}{j} = \]

8. Escriba las siguientes sumas en forma breve, usando la notación \sum:
 \[a_1 + a_2 + a_3 = \sum_{k=1}^{3} a_k; \quad b_3 + b_4 + b_5 + b_6 + b_7 = \sum_{k=?}^{??} ?? = \sum_?; \]
 \[4 + 8 + 16 + 32 = \sum_2^2; \quad \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \sum. \]
Cambio de variable en la suma (repaso)

9. Escriba en forma explícita las siguientes sumas y compare los resultados:

\[
\sum_{j=4}^{6} a_j = \ ? + \ ? + \ ? ; \quad \sum_{k=7}^{9} a_{k-3} = \ ? + \ ? + \ ? .
\]

10. Ejemplo.

\[
\sum_{j=4}^{6} a_j = \left[\begin{array}{c} k = j + 3 \\ j = k - 3 \end{array} \right] = \sum_{k=7}^{9} a_{k-2}.
\]

11. Haga cambios de variables:

\[
\sum_{j=3}^{8} a_j = \left[\begin{array}{c} k = j - 2 \\ j = \ ? \end{array} \right] =
\]

\[
\sum_{j=4}^{7} a_{j+1} = \left[\begin{array}{c} k = j + 1 \\ j = \ ? \end{array} \right] =
\]

12. Escriba la siguiente suma en forma extensa (todos los sumandos) y luego en forma breve con una variable nueva:

\[
\sum_{k=2}^{5} q^{k+1} = \ ? + \ ? + \ ? + \ ? = \sum_{p=??}^{???} q^p = \sum_{p=}^{q^p} q^p.
\]

Ahora el mismo cambio de variable de manera formal:

\[
\sum_{k=2}^{5} q^{k+1} = \left[\begin{array}{c} p = \ ? \\ k = \ ? \end{array} \right] = \sum_{p=}^{q^p} q^p.
\]
Separación del primer o último sumando de la suma (repaso)

13. Separación del primer sumando de la suma:
\[
\sum_{j=1}^{4} a_j = \underbrace{___} + \underbrace{___} + \underbrace{___} + \underbrace{___} = a_1 + \left(a_2 + \underbrace{___} + \underbrace{___} \right) = a_1 + \sum_{j=1}^{___}.
\]

14. Separación del último sumando de la suma:
\[
\sum_{k=3}^{7} c_k = \underbrace{___} + \underbrace{___} + \underbrace{___} + \underbrace{___} + \underbrace{___} = \left(\underbrace{___} + \underbrace{___} + \underbrace{___} + \underbrace{___} \right) + \underbrace{___} = \sum_{k=3}^{___} + \underbrace{___}.
\]

15. Separe el primer sumando de la suma:
\[
\sum_{j=2}^{9} a_j = \underbrace{___} + \sum_{j=2}^{___}.
\]

Separe el último sumando de la suma:
\[
\sum_{j=2}^{9} a_j = \sum_{j=2}^{___} + \underbrace{___}.
\]
16. **Ejemplo.** Escriba los sumandos de manera explícita y simplifique el resultado: Simplifique la suma:

\[
\sum_{j=2}^{6} a_j - \sum_{j=4}^{7} a_j = \sum_{j=2}^{3} a_j + \sum_{j=4}^{7} a_j = \sum_{j=2}^{3} a_j + \sum_{j=4}^{7} a_j = \sum_{j=2}^{3} a_j.
\]

17. Los cálculos del ejercicio anterior se pueden escribir de manera más formal usando la partición de sumas. Es importante comprender cuál conjunto de índices tienen dos sumas en común:

\[
\{2, 3, 4, 5, 6\} \cap \{4, 5, 6, 7\} = \{\}
\]

Luego separar los sumandos correspondientes:

\[
\sum_{j=2}^{6} a_j - \sum_{j=4}^{7} a_j = \left(\sum_{j=2}^{3} a_j + \sum_{j=4}^{6} a_j\right) - \left(\sum_{j=2}^{3} a_j + \sum_{j=4}^{6} a_j\right) = \sum_{j=2}^{3} a_j - \sum_{j=4}^{7} a_j.
\]

18. Simplifique la siguiente diferencia:

\[
\sum_{j=0}^{7} a_j - \sum_{j=1}^{11} a_j =
\]
Deducción formal de la fórmula para la suma finita de una progresión geométrica

19. Escriba la siguiente suma usando la notación \(\sum \):

\[
1 + q + q^2 + \cdots + q^{n-1} = \sum_{j=??}^{??} q^j = \sum_{j=??}^{??} q^j.
\]

20. En la siguiente suma separe el primer sumando:

\[
\sum_{j=0}^{n-1} q^j = \sum_{j=??}^{??} q^j + \sum_{j=??}^{??} q^j.
\]

21. Multiplique cada sumando por el factor \(q \), haga el cambio de variable y separe el último sumando:

\[
q \sum_{j=0}^{n-1} q^j = \sum_{j=0}^{n-1} q \cdot q^j = \sum_{j=0}^{n-1} q^j = \left[\begin{array}{c}
k = j + 1 \\
j = \?
\end{array} \right]
\]

\[
= \sum_{k=??}^{??} q^k = \left(\sum_{k=??}^{??} q^k \right) + \sum_{k=??}^{??} q^k.
\]

22. Usando los resultados de los ejercicios anteriores simplifique la expresión:

\[
(1 - q) \sum_{j=0}^{n-1} q^j =
\]

23. Escriba la fórmula para la suma finita de la progresión geométrica:

\[
\sum_{j=0}^{n-1} q^j = \text{donde} \quad q \neq \?
\]

Sumas parciales de la progresión geométrica, notación sigma, página 6 de 6