Aproximación de elementos de EHNR por redes

Objetivos. Dado un EHNR $H \leq \mathbb{C}^X$ con NR K y una función $f \in H$, definir una red que converja a f y cuyos elementos sean combinaciones lineales de núcleos K_x , $x \in X$.

Prerrequisitos. Interpolación en EHNR, convergencia de redes.

En este tema suponemos que X es un conjunto y $H \leq \mathbb{C}^X$ es un EHNR. Denotamos por K el núcleo reproductor de H.

Para cada $Y \subseteq X$, denotamos por H_Y el subespacio cerrado generado por

$$\{K_y\colon y\in Y\}.$$

Denotamos por P_Y la proyección ortogonal sobre H_Y .

- **1 Definición.** Denotamos por \mathcal{F}_X al conjunto de los subconjuntos finitos de X. Consideramos \mathcal{F}_X como un conjunto parcialmente ordenado, con la relación \subseteq .
- **2 Proposición.** \mathcal{F}_X es un conjunto dirigido.

Demostración. Si $F_1, F_2 \in \mathcal{F}_X$, entonces

$$F_1 \cup F_2 \in \mathcal{F}_X$$
, $F_1 \subseteq F_1 \cup F_2$, $F_2 \subseteq F_1 \cup F_2$.

Por lo tanto, \mathcal{F}_X es un conjunto dirigido.

3 Proposición. Sea $g \in H$. Entonces la red $(P_Y g)_{Y \in \mathcal{F}_X}$ converge a g.

Demostración. Sea $\varepsilon > 0$. Como $\ell(\{K_y : y \in X\})$ es denso en H, existen $m \in \mathbb{N}$, $y_1, \ldots, y_m \in X$, $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$ tales que

$$\left\|g - \sum_{j=1}^{m} \alpha_j K_{y_j}\right\| < \varepsilon.$$

Pongamos $F_0 \coloneqq \{y_1, \dots, y_m\}$. Como $P_{F_0}g$ es el elemento de H_{F_0} más cercano a g,

$$\|g - P_{F_0}g\| \le \left\|g - \sum_{j=1}^m \alpha_j K_{y_j}\right\| < \varepsilon.$$

Si $F_1 \in \mathcal{F}_X$ y $F_0 \subseteq F_1$, entonces $H_{F_0} \subseteq H_{F_1}$ y $P_{F_0}g \in H_{F_1}$. Como $P_{F_1}g$ es el elemento de H_{F_1} más cercano a g, obtenemos

$$||g - P_{F_1}g|| \le ||g - P_{F_0}g|| < \varepsilon.$$

Criterio para que una función sea elemento del EHNR, page 1 de 1